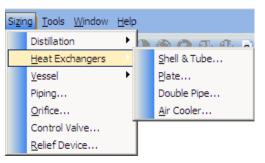
CHEMCAD 6.0 SIZING TOOLS PIPES, PUMPS, METERS AND VALVES

By John E. Edwards

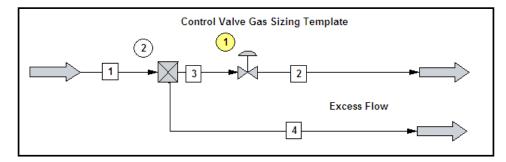
STIL.

CONTENTS

Introduction	3
Pipe UnitOp Validation Case	5
Control Valve Liquid Sizing Tool	. 8
Control Valve Gas and Vapour Sizing Tool	11
Orifice Plate Sizing Tool	13
Piping Distribution System Study	. 18
Pipe Network with Pump Curve	19
Relief Vent Piping Manifold Rating	23
Reactor Jacket Circulation Study	26
Stream Blending System Study	30


APPENDICES

- Appendix I Fluid Flow in Pipes Fundamentals
- Appendix II Flow Meter Considerations
- Appendix III Control Valve Logic in CHEMCAD
- Appendix IV General Information

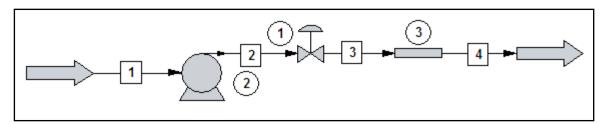

CHEMCAD 6.0 SIZING TOOLS - PIPES, PUMPS, METERS AND VALVES - INTRODUCTION

CHEMCAD simulation software provides tools for the sizing of most types of process plant and equipment. This training note reviews the shortcut and rigorous sizing facilities available for pipes, pumps, control valves, relief valves and orifice plates. Actual design cases are presented to demonstrate the power and flexibility of the software, which when used in conjunction with the Excel mapping tool, provides the designer with powerful facilities.

Short cut methods for Pipes, Control Valves and Orifice Plates are accessed from the main toolbar Sizing command as shown below:

The stream properties to be used for sizing are selected by a single mouse click on the stream in the model to be studied. In the example shown below Stream 1, as indicated by the black square markers, has been selected.

Selecting the sizing tool required will make available the relevant data input Window, as shown below, for Pipes, Control Valves and Orifice Plates:


🚆 - Line Sizing -	
Sizing Option	Stream ID: 1
 Typical sizing for single phase. Sizing based on Dp/100 ft. 	
 Sizing based on Op room. Sizing based on velocity 	
Pipe Schedule 40	
Roughness 4.572e-005	m
Method Single phase or two ph	nase-Baker's method 📃
Help	Cancel OK
	- Orifice Sizing -
	Pressure taps:
	O Flange
	C Corner C D and D/2
	• 21/2 D and 8D
	Pipe inside diameter
	Differential pressure
	Expansion factor
	Help

PAGE 3 OF 48 MNL 063B Issued 29 August 2008, Prepared by J.E.Edwards of P & I Design Ltd, Teesside, UK

INTRODUCTION

After data entry, selecting the OK command will provide the calculation results in WordPad or Excel format. When this report is combined with the Stream properties WordPad report, obtained from "Results - Stream Properties - Select Streams", a comprehensive report can be created by editing in Word. The shortcut methods are suitable for use in conceptual design to establish initial plant sizing and costing. For example, the short cut method for control valves only considers globe valves and the critical flow and reducer correction factors need to be calculated or determined from specific manufacturers' data.

For detailed design and specification a more rigorous approach is required involving the use of additional CHEMCAD UnitOps and manufacturers' sizing data. The flowsheet below shows the UnitOps for Pipes, Pumps and Control Valves which allow for a more thorough analysis.

The main Pipe UnitOp data entry Window is shown and allows for the selection of a comprehensive range of sizing methods, options and friction factors. The Churchill friction factor correlation is valid for the laminar, transition and turbulent flow regimes whereas Jain is suitable for Reynolds Numbers in the range 4.0 E03 to 1.0 E08. The static head is entered using the elevation change, where negative values are used for pipes going downwards in the direction of flow.

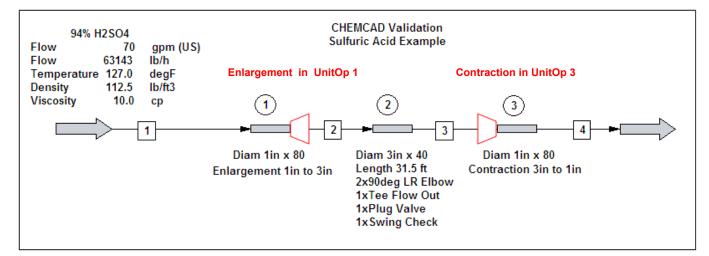
🗧 - Pipe Sizing and	d Rating (PIPE) -					X
Specifications	Properties	Calculated Re	sults Valves	Fittings	Heat Transfer	
Method	2 Single Phase flow		-		ID: 3	
Sizing option	2 Single Phase flow 3 Two Phase-Baker 4 Water: Hazen-Wil 5 Steam: Fritzsche fi 6 Beggs and Brill two	iams ormula	Number of segme	ents		
Pipe diameter	0.08	m	Pipe diameter is	ID unless schedule i	is specified	
Pipe Schedule			Optional pipe case studi	ies		
Pipe Length	25	m	Pipe diameter case #2		m	
Elevation Change		m	Pipe diameter case #3		m	
Friction factor mode	el 1 Jain	•				
Enter one of the f	following:		📃 🔲 Include holdup	in dynamic simulatio	n	
Roughnes	ss factor 4.572e-00	5 m				
O Pipe Mate		-				
			✓ Include gas exp	pansion factor.		

The Pump UnitOp data entry Window is shown and allows for the selection of a comprehensive range of operating modes, including multiple speed line performance curves allowing for the study of variable speed applications.

		1
Specificati	ons	Cost Estimation
Specify outle Pressu Specify pres Enter charac	sure increase par	ID: 1
	1.5	Performance curve calc option
Efficiency C Calculated results:	1.5	Performance curve calc option Fixed flowrate, calc Pout
	0.5 m	Fixed flowrate, calc Pout
Calculated results:		Fixed flowrate, calc Pout
Calculated results: NPSH(available)	m	Fixed flowrate, calc Pout
Calculated results: NPSH(available) Calculated power	m 1.95672 MJ/h	Fixed flowrate, calc Pout

CHEMCAD 6.0 SIZING TOOLS - PIPE UNITOP VALIDATION CASE

PROCESS DESCRIPTION


This validation case study has been based on the flow of 94% Sulphuric Acid through a 3 in x Schedule 40 carbon steel pipe. CHEMCAD results are validated against an example given in <u>www.cheresources.com/eqlength.shtml</u>. The process conditions are shown below:

Process Data	Units	Example Data	CHEMCAD
Mass Flow Rate	lb/h	63143	
Volumetric Flow rate	gpm (US)	70	70
Density	lb / ft ³	112.47	112.47 (Pipe Props)
Specific Gravity	dimensionless	1.802	
Viscosity	cps	10	10 (Pipe Props)
Temperature	°F	127	127
Pipe ID	in	3.068	3.068
Velocity	ft / s	3.04	3.036
Reynold's Number	dimensionless	12998	12998.9
Darcy Friction Factor	f (pipe)	0.02985	0.03000
Friction Factor at Turbulence	ft	0.018	Not declared
Straight Pipe	ft	31.5	31.5

The pipe section has $2 \times 90^{\circ}$ elbows, 1×1 flow-out branch Tee, 1×1 swing check valve, 1×1 plug valve, and 1×3 in to 1 in expansion. The contraction has been added to the model for testing purposes.

CHEMCAD MODEL

For practice you can build the model or use the model called "Sulfuric Acid" in the electronic media supplied. It is strongly recommended that you work with a copy of this job. The model flowsheet is shown that represents the piping layout.

MODEL CONFIGURATION

The key aspect of this problem is the handling of the enlargement and contraction. The fitting must be located in the 1 in pipe section with separate Pipe UnitOps 1 and 3 included to allow for this. Locating the enlargement and contraction in Pipe UnitOp 3 gives incorrect results. Refer to Appendix I for a detailed assessment of this theory.

The plug valve L/D has been entered as a user value as the CHEMCAD library value did not match the example data.	Friction factor model 0 Churchill
The Pipe Section data entry for the 3 in pipe is shown following.	Enter one of the following:
The Curchill friction factor has been selected due to the application being in the transition flow region.	Roughness factor 0.00015 ft Pipe Material Commercial Steel
CHEMCAD library has been used for pipe roughness factor.	

MODEL CONFIGURATION

Specifications Properties Calculated Results Valves Fittings Heat Transfer Specifications Properties	Calculated Results Valves	1
	1 1	Fittings Heat Transfer
Please enter the number and type of valves below ID: 2 Please enter the number and type of	of fittings below	ID: 2
Gate valve Butterfly 2.8 inches Swing check, clearway 1 Enter # of welded fittings	Flanged fittings	Miscellaneous:
Globe flat, bevel, plug Butterfly 10-14 inches Swing check, tilting seat Elbow 45 deg, R/D=1.0	Standard elbow 90 deg.	Entrance, projecting
Globe wing/pin guided disc Butterfly 14-24 inches Tilt disk 5 deg 2-8 in Elbow 45 deg, R/D=1.5	Standard elbow 45 deg.	Entrance, sharp edged
Angle, no obstruction Plug, straight Tilt disk 5 deg 10-14 in Elbow 45 deg, R/D=2.0	Standard 90 long R 2	Entrance, slightly round
Angle wing/pin guided disc Plug, 3-way straight Tilt disk 5 deg 16-48 in Return 180, R/D=1.0	Return 180 close	Entrance, well rounded
Y-pattern globe 60 deg Plug, 3-way branch Tilt disk 15 deg 2-8 in Return 180, R/D=1.5	Standard T, flow-thr run	Exit from pipe
Y-pattern globe 45 deg Foot valve, poppet disk Tilt disk 15 deg 10-14 in Tee 100% flow-thr run	Standard T, flow-thr brnch 45 deg T, flow-thr run	Sudden contraction
Ball valve Foot valve, hinged disk Tilt disk 15 deg 16-48 in Tee 100% flow-out branch 1	45 deg T, flow-thr brnch	Sudden expansion
User specified fittings/valves Lift or stop check, globe Tee 100% november 400% for the and	Elbow 90 deg, R/D=1.0	
Type L/D,Kr,Ks Ki Kd Count Lift or stop check, angle Reducer	Elbow 90 deg. R/D=1.5	For sudden contraction/expansion:
L/D ¥ 18	Elbow 90 deg, R/D=2.0	Small dia. / Large dia.
Help Cancel OK Help		Cancel OK

DATA MAPPING

The model is controlled directly from an Excel spreadsheet Sulfuric Acid. This is linked to the model using the CHEMCAD Data Mapping Tool which is accessed from the main Toolbar. The Data Map operation is controlled by the Execution Rules.

Tools Window Help	
Economics	R C P 8
Costing	
Reaction Rate Regression	
Excel Data Map	New Data Map
Execute Parser	Edit Data Map
Units Calculator (F6)	Execution Rules
Simple Calculator (F7)	

The control spreadsheet, located in the My Simulation folder, is selected with Browse. The Data Map is shown in which the desired Stream or UnitOp is selected, with the required parameter, and assigned an Excel cell in the control spreadsheet.

					New	Embed
	Excel Workbo	ook Path:	C:\DOCUMENTS	S AND SETTI	Browse	Open
	Excel Worksh	eet Name:	Validation			
Map Rule	CC Obj Type	CC Obj ID	Par ID	Component	WrkSht Cel	Weight
To Workshe	UnitOp	1	Calc. Velocity	<none></none>	F9	1.00000
To Workshe	UnitOp	1	Fric factr lig	<none></none>	F10	1.00000
To Workshe	UnitOp	2	Calc. Velocity	<none></none>	F13	1.00000
To Workshe	UnitOp	2	Reynolds # liq	<none></none>	F14	1.00000
To Workshe	UnitOp	2	Fric factr liq	<none></none>	F15	1.00000

The execution rules, as set below, transfers input data to CHEMCAD at the start of the simulation and returns results at the end of the simulation.

					Data I	lap Execution Rules			×
CHEMCAD		Data Map	[Control		Select Data Maps	Before simulation	After simulation	
Job	•	Execution		Spreadsheet		DataMap1	 To CHEMCAD	To Workbook	-
100			-▶	Spiedasneet		DataMap2	 To CHEMCAD	 To Workbook 	-

The Excel program has a control macro, located and activated from Add Ins, installed which enables the CHEMCAD model to be linked and controlled from the tool bar using the features shown.

RESULTS

The fitting resistance coefficients used are shown in the table together with CHEMCAD derived Leg values.

Fittings	L _{eq} /D	L _{eq}	L _{eq} (CHEMCAD)	$K = f_t (L/D)$	Quantity	Total Leg
90° Long Radius Elbow	20	5.1	5.1	0.36	2	10.23
Tee Flow-out branch	60	15.3	14.8	1.08	1	15.34
Swing Check Valve	50	12.8	12.9	0.9	1	12.78
Plug Valve	18	4.6	4.6 ⁽¹⁾	0.324	1	4.6
3in x 1in Reducer	None	822.7	492.6 ⁽²⁾	57.92	1	822.7
Total						865.6

Notes

(1) User value fitting coefficient entered into CHEMCAD

(2) The value quoted is calculated using f_{pipe} , if f_t is used value is 821.6. Refer to control Excel worksheet for further details.

The spreadsheet studies the handling of the enlargement fitting by different methods. It can be seen that there is agreement between the different methods with the main issue being whether to use f_t or f_{pipe} to calculate L_{eq} .

					¥alie	dation of CHEMC/	AD in handling pipe	diam	eter cha	nges.				
Example	e 96% Sulfuric	Acid C	CHEMCAD				igs 1 in x 80 by 3 in x 40 E						CHEMCAD	
	Data		Results			Calculations using pipe conditions f							Results	
01	0.0798 ft	t					Inlet Pipe						Inlet Pipe	
.1	0.5 ft	t				К1	2.6sin(0 /2)(1- <mark>8</mark> ^2)^2		0.549					
1	31.21 ft	t/s	31.20	v1^2/2g	15.13	Friction Loss (hf)1	K1(v1°2/2g)		8.30	ft fluid				
1			0.0270				(hf)1(p/144)		6.48	psi				
D2	0.2557 ft	t		DI/D2	0.312	Equ	ivalent Length Method	iniet i	Pipe		Example Calcula	itions using ft		
L2	31.5 ft	t I				L1/D1	K1/f1		20.304		Klift	30.48		
v2	3.04 ft	t/s	3.036	v2^2/2g	0.143	(Leg)1	(L/D)1D1		1.62	ft	(L/D)1D1	2.43	2.405	ft
Re No	12998		12998.9			Friction Loss (hf)1	(fLv^2/2gD)1		8.300	ft fluid	(fLv^2/2gD)1	12.32		
f2	0.02985		0.0300			, <i>í</i>	(hf)1(p/144)		6.48	psi	(hf)1(p/144)	9.62	9.64	psi
ft	0.018						Outlet Pipe							· · ·
AP/100ft	1.308 p	si	1.32			K2	K1/B^4		57.84					
D	112.47 Ib					Friction Loss (hf)2	K2 (v2*2/2g)		8.28	ft fluid				
psi/100ft	1.307						(hf)2(p/144)		6.47					
8	30 d	lea				Eau	ivalent Length Method (Dutlet		F = 1	Example Calcula	tions using ft		
d	3.0684 in	~				L2/D2	K2#2		1926.29	K2łf+	K2fft	3213.12		-
v	63143 IL					(Leg)2	(L/D)2D2		492.55		(L/D)2D2	821.60		
	00110 12					Friction Loss (hf)2	(fLv^2/2gD)2			ft fluid	(ftLv^2/2gD)2	13.76		
g	32.2 ft	N=^2				r nodon coss (nijz	(hf)2(p/144)		6.44		(hf)2(p/144)	10.75		
9	52.2 10	032					(0)=(p(1))		0.44	psi	()=(p)	10.10		
Formulaeus	sed for K1 and	V2									Enlargeme	ent located in lar	ner diameter ni	ine
						Pressure Loss	Basis 1.32 psi/100ft		6.48	:	Chiargenia	Total Leg	ger diameter p 38,4	
vi 6	-β ²)-K ₁	V1				Flessule Loss	K value method		6.82	F = -		Leg(Ap/100ft)	0.505	
$\frac{1}{2g}$	-в /-к.	29					K value method		6.02	psi	Calculated	From psi/100ft	0.505	
											Calculated	(fLv°2/2qD)2		ft flui
K1 V	$\frac{1}{2} - K_2 \frac{v_2^2}{2g}$										Friction Loss (hr)2		0.501	
<u>п_</u> = в ⁴ 2е	-K22g										r nodon zoss (nijz	(11)=(p1144)	0.001	psi
E	ed for calculati					Ninta and Saturday of	i results throughout on ir	1.4		in a New Core	n a marakan darikkaring d			
Formula use Set L=100	ed for calculati	INGAPTIOUR					results throughout on in Its using AP/100ft metho		a outlet us	ing the Cra	ne method with pipe r			
							es correctly only when e				a alaa ad in amallas die	mater size Unit	7=	
AD = 0.00	000336 ^f	W .					s correctly only when e						-p	
Δr -0.00	ρ β	b d ⁱ				CHEMICAD calculate	s equivalenciengin or n	langs	using prev	anny pipe	niction ractor and no	(n		
						Cittin	ngs 1 in x 80 by 3 in x 40 C	`ontra	otion					
						K1	0.5(1-B^2)	,onda	0.451					-
						K1 Friction Loss (hf)1				ft fluid				
						Friction Loss (nf)1	K1 (v1^2/2g) (hf)1(p/144)		5.332				5.34	n ni
						L1/D1	(hrj1(pri44) K1/f1		5.332	psi			0.34	psi
						(Leg)1	(L/D)1D1		1.33	0			1.33	0
						(ead))	Entrance to Pipe		1.33	N.			1.33	n.
						1/4	· · · · ·		0.5					
						K1	0.5		0.5	ft fluid				
						Friction Loss (hf)1	K1 (v1^2/2g)							
						L1/D1	(hf)1(p/144) K1/f1		5.91 18.50	psi			5.91	psi
							(L/D)1D1			0				
						(Leq)1	N /		1.48	10			1.47	R
							Exit from Pipe							
						К1	1 1		1					
						Friction Loss (hf)1	K1 (v1^2/2g)			ft fluid			11.8	psi
							(hf)1(p/144)		11.82	psi	1			
						L1/D1 (Leg)1	K1/H (L/D)1D1		37.01 2.95				2.95	

CHEMCAD predicts a line pressure drop of 12.61 psi as compared to the example line pressure drop of 11.734 using the total equivalent length method.

CHEMCAD physical property predictions for 94% Sulfuric Acid did not agree with the example values. CHEMCAD has a feature in the Pipe UnitOp to allow the user to enter different physical properties to the Stream values and this was used.

CHEMCAD 6.0 SIZING TOOLS - CONTROL VALVE LIQUID SIZING TOOL

TOPIC REVIEW

CHEMCAD provides facilities for the sizing of globe type control valves. The methods are based on "Control Valve Sizing" by Masoneilan Company, 6th Edition, which is entirely compatible with ISA SP39.1, "Control Valve Sizing Equations for Incompressible Fluids". The fundamental equations are presented as follows:

The valve coefficient (Cv) metric equations for non-viscous liquid flow are given by:

For sub-critical flow where $\Delta P < C_f^2 (\Delta P_s)$

$$C_v = 1.16 q \sqrt{\frac{G_f}{\Delta P}}$$

Where

.....

liquid flow rate (m³ / h)

critical flow factor from manufacturers' data

specific gravity of liquid at flowing temperature, water at 15°C=1.0

actual pressure drop (bar)

For critical flow where $\Delta P \ge C_f^2 \left(\Delta P_s \right)$

P₁

P₂

P_v

Pc

μ

Ċf

Gf

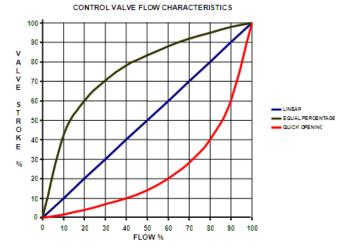
 $\Lambda \mathbf{P}$

$$C_v = \frac{1.16 \text{ q}}{C_f} \sqrt{\frac{G_f}{\Delta P_s}}$$

$$\Delta P_{\rm s} = P_1 - \left(0.96 - 0.28 \sqrt{\frac{P_{\rm v}}{P_{\rm c}}}\right) P_{\rm v}$$

Where

upstream pressure (bar) downstream pressure (bar) fluid vapour pressure at flowing temperature (bar) critical pressure (bar) fluid viscosity (cps)


Laminar flow can result at high viscosity or when the valve ΔP or C_v is small.

Calculate turbulent flow C_v and laminar flow C_v and use the larger value as the required C_v.

For laminar flow we have:

$$C_{v} = 0.032 \left(\frac{\mu \ q}{\Delta P}\right)^{0.667}$$

The control valve characteristic curves are shown below. Generally equal % is used for temperature and flow and linear valves are used for pressure and level.

CHEMCAD MODEL

The CHEMCAD Control Valve Sizing Liquid model is set up with streams suitably configured for liquids as shown below. A dummy stream is used to determine liquid vapour pressure. Data Map is defined to interface with the spreadsheet Control Valve Sizing Liquid located in My Simulation folder.

MODEL CONFIGURATION

The Divider UnitOp 1 allows for transfer of Control Valve calculated flow to Stream 2 to maintain the mass balance around the Divider. A globe control valve can be sized by selecting Sizing – Control Valve on the main Toolbar. Sizing is to be carried out using the stream properties of the selected stream. The data entry Window is as follows:

👺 - Control Valve Sizing	-	×
	Stream ID:	2
Downstream pressure Critical flow factor Correction factor	1.2 bar 0.85 0.9992	
Seat: Single-seat Double-seat	,	
Static head	m Cancel	OK

This facility has limited use as it only applies to globe type control values of sizes ≥ 1 in and the non-critical flow condition.

For a more rigorous design the user should enter manufacturer's data into the Control Valve data entry screen.

RESULTS

Sizing spreadsheet Control Valve Liquid Sizing has been created to analyse the CHEMCAD model calculation results and to obtain Physical Property Data to allow for validation of control valve results. Sizing parameters are calculated using the relevant equations.

The sizing spreadsheet for liquid control valve sizing is shown below:

Control Valve Sizing								
		Liquid			Sizing Correc			
Process Fluid		Methanol				Critical	Flow Factor Cf	
Design Mass Flow	kg/h	600.0	((<u>n</u>)	Critical Flow Factor	Cf	0.85	Rigorous ∆P₅
			$\Delta P_s = P_1 - 0.96 -$	0.28 $\frac{P_v}{P_v}$ P_v	Critical Flow Factor Inlet Pressure Adjusted for Vapor Pressure	ΔPs	1.832	1.840
Design Volume Flow	q m3	/h 0.760		γP _c)	Critical Flow Test Parameter	$C_{f}^{2}(\Delta P_{s})$	1.323	
Temperature	deg C	25	$\Delta \mathbf{P}_{s} = \mathbf{P}_{1} - \mathbf{P}_{v}$		Critical(Flashing) Flow Test		Subcritical	
				Subcritical				
Inlet Pressure	P1 ba	ar 2		=1.16 Gf	Subcritical Flow Coefficient	Cv	0.876	
			C _v =	= 1.16 q VAP	Critical Flow Coefficient	Cv	0.681	
Downstream Pressure	bar	1.2		Oritical	1			
Liquid Density	Gf kg/n	13 789.6		Critical	1			
Elquid Density	GI Kg/I	13 705.0	C _v =	1.16 q G _f		Effect of	Pipe Reducers	
Liquid Viscosity	ср	0.5		$C_f \rightarrow \Delta P_s$				
					Valve Size	mm	25	
Vapor pressure at flowing conditions	Pv ba	ar 0.1684			Line Size	mm	50	
					Effect of Reducers Correction Factor		0.9992	
Pressure at Critical Point	bar	80.97	Data Base Look Up					
	-	0.070		Laminar		High Viscos	ity, Laminar Flow	
Valve Flow Coefficient Required	Cv	0.876						
					Laminar Flow Coefficient	Cv	0.020	
Valve Coefficient at Full Opening	Cv	2			Laminar Flow Test		Turbulent	
Valve Characteristic		0 Equal Percentage	0 Equal %, 1 Linear		Selection of Valve Type	Single Seat Glo	bbe (Flow to Close) 💌	
Valve Opening Position	%	64	Adjust for design max flo	w				
Actual Mass Flow	kg/h	599.3						
Actual Volume Flow	m3/h	0.759						
Valve Coefficient Achieved	Cv	0.875						
					Cell Colour Key			
Downstream Vapor Fraction		0.000			Calculated Data			
					Data to CCD			
Flowing Condition		Liquid Only			Data from CCD			

The spreadsheet is configured to facilitate the sizing of most types of control valve under non-critical, critical and laminar flow conditions. It also allows for the entry of valve characteristic, critical flow factor F_a from manufacturers' data and for the effect of reducers.

The spreadsheet allows for the position of Control Valve UnitOp 2 to be adjusted to obtain the C_v at the specified flow conditions.

CHEMCAD 6.0 SIZING TOOLS - CONTROL VALVE GAS AND VAPOUR SIZING TOOL

TOPIC REVIEW

The methods are based on "Control Valve Sizing" by Masoneilan Company, 6th Edition, which is entirely compatible with ISA SP39.3, "Control Valve Sizing Equations for Compressible Fluids". The fundamental equations are presented as follows:

The gas density at flowing conditions is given by the following:

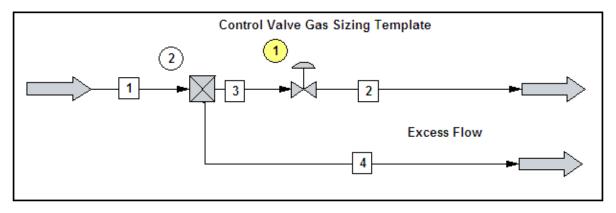
0	_ M _w	$\sim \frac{P_{f}}{2}$	273	$-kg / m^3$	
P_{G}	22.415	[^] Z [^]	T_{f}	ĸg / III	

Where	Mw	molecular weight of fluid (kg / kmol)
	p _f	flowing pressure (bar)
	T _f	absolute flowing temperature (°K)
	Z	gas compressibility

The valve coefficient (Cv) metric equation for gas and vapour flow at sub-critical and critical conditions is given by:

C -	Q _v	GT
C _v -	$\frac{1}{257 \text{ C}_{\text{f}} \text{P}_{1}}$	$y = 0.148 y^3$

Where	Q	gas flow rate at 15°C and 1013 mbar (m ³ / h)
	C _f	critical flow factor from manufacturers' data
	G	specific gravity of gas (air =1.0)
	P ₁	inlet pressure (bar)
	Т	flowing temperature (°K = 273 + °C)


Where y is given by the following:

17	_	1.63		ΔΡ
у	_	C_{f}	Ì	P ₁

y has a maximum value of 1.5 when $\begin{pmatrix} y & -0.148 & y^3 \end{pmatrix}$ becomes 1.0 ie at critical flow condition.

CHEMCAD MODEL

The simple CHEMCAD model Control Valve Gas Sizing is set up with streams suitably configured for steam, vapours and gases as shown below:

RESULTS

Sizing Spreadsheet Control Valve Gas Sizing has been created to analyse the CHEMCAD model calculation results and to obtain Physical Property Data to allow for validation of control valve results. Sizing parameters are calculated using the relevant equations.

The sizing spreadsheet for Gas and Vapour control valve sizing is shown below:

Control Valve Sizing		Gas	Sizing Corrections		
				0-11-1	
Process Fluid	N	itrogen		Critical	Flow Factor Cf
Molecular Weight		28.01			
Initial Sizing Mass Flow	kg/h		izing Flow Entered Critical Flow Factor (Full opening)		0.85
Gas Density (1.013 bar, 15 degC)	kg/m3	1.1847	Mw Pr 273 Note: Onset of critical flow conditions as	Cf is lowered.	
Design Volume Flow (1.013 bar, 15 degC)	sm3łh	590.87	$p_{G} = \frac{222W}{22.415} \times \frac{2T}{Z} \times \frac{T}{T_{f}} \times \frac{kg}{T} / \frac{m^{2}}{m^{2}}$ Critical Pressure Drop		0.759
Temperature	deg C	25	Critical Flow Test		Critical
Inlet Pressure	bar	2.10	Flow Coefficient (y < 1.5)	Cv	22.712
			$C_{x} = \frac{\sqrt{y^{0}}}{1}$ Flow Coefficient (y >= 1.5)	Cv	21.862
Downstream Pressure	bar	1.20	$C_{v} = \frac{Q \sqrt{G T}}{257 C_{f} P_{1}(y + 0.148 y^{2})}$ Flow Coefficient (y < 1.5) Flow Coefficient (y > 1.5) When y = 1.5, bracketed "y" function = 1		
Gas Density at Inlet Conditions	kg/m3	2.37		-	D. D. I.
Gas Viscosity	ср	0.0178		Effect of	Pipe Reducers
		0.0110	Valve Size	mm	50
Gas Specific Gravity (air = 1)		0.9668		mm	80
			$F = 1 + \frac{\Sigma K}{V}$ Effect of Reducers Correction Factor		0.9718
Valve Flow Coefficient Required	Cv	22.71	N2 d ² Fisher Method Fp		0.9741
· · · · · · · · · · · · · · · · · · ·					
Corrected Valve Flow Coefficient Required	Cv	23.37			
· · ·			$\Sigma K = K_1 + K_2 = 1.5 \left[1 - \beta^2 \right]$ Critical Flow Parameter	y	1.255
Valve Coefficient at Full Opening	Cv	36	$2\mathbf{n} \mathbf{n}_1 \mathbf{n}_2 \mathbf{n}_2 \mathbf{\mu}_{\mathbf{p}} \mathbf{p}_{\mathbf{j}}$	-	
Valve Characteristic	0	Equal Percentage	$y = \frac{1.63}{C} \Delta P$ Selection of Valve Type	Single Seat G	lobe (Flow to Close 🔻
C27 = 0, Equal % =1, Linear			C _f P _i		
Valve Position	%	78	Adjust valve position to	1 Cf	
			give sizing flow D5 Single Seat Globe (Flow to Close)	0.85	
Actual Mass Flow	kg/h	690.5	Single Seat Globe (Flow to Open)	0.9	
Standard Volume Flow 0 degC	m3łh	552.48	Rotating Disc (Flow to Close)	0.68	
Standard Volume Flow 15 degC	m3łh	582.87	Rotating Disc (Flow to Open)	0.85	
Actual Volume Flow	m3łh	290.91	Double Seat Globe V Port	0.98	
Case Valve Coefficient (y < 1.5)	Cv	22.405	Butterfly	0.65	
Case Valve Coefficient (y>= 1.5)	Cv	21.566	Ball Valve (Flow to Open)	0.6	
			Angle Valve (Flow to Close)	0.81	
CHEMCAD Control Valve Sizin			Angle Valve (Flow to Open)	0.9	
Total flow	690.53	-			
Upstream pressure		bar			Data Entry in CC
Downstream pressure		bar			
Critical flow factor	0.85				Cell Colour Key
Corr. factor for reducers	0.974				Calculated Data
Static head	0	m			Data to CCD
Seat type Single-Seat					Data from CCD
Flow type Critical flow					
Calc. coefficient Cvc	21.69				
Capacity coefficient Cv	36				
Cvc / Cv ratio	0.6026				
Valve size	0.0508	m			

The spreadsheet is configured to facilitate the sizing of most types of control valve under non-critical and critical flow conditions. It also allows for the entry of valve characteristic, critical flow factor F_a from manufacturers' data and for the effect of reducers.

The spreadsheet allows for the position of Control Valve UnitOp 1 to be adjusted to obtain the C_v at the specified flow conditions.

CHEMCAD 6.0 SIZING TOOLS - ORIFICE PLATE SIZING TOOL

TOPIC REVIEW

CHEMCAD provides facilities for the sizing of concentric orifice plates used in the measurement of fluid flow rates. The methods are based on "Principles and Practice of Flow Meter Engineering" by L.K.Spink, Foxboro Company, 1967. The fundamental equations are presented as follows:

The equation for non-viscous liquid flow is given by:

c	_	Wm
3	_	$\overline{N \ D^2 F_a F_m \sqrt{G_f} \sqrt{h_m}}$

Where	W _m D F _a N G _f	maximum rate of flow (lb/h) inside pipe diameter (in) ratio of area of primary device bore at flowing temperature to that at 68°F manometer correction factor (=1 for diaphragm transmitters) constant for units adjustment (N=2835 for lb/h) specific gravity of liquid at flowing temperature, water at 60°F=1.0 maximum differential pressure (in wo)
	hm	maximum differential pressure (in wg)

$F_a = 1 + 2\alpha (t_f - 68)$

 Where
 α
 coefficient of thermal expansion for orifice material (in/in °F) see below typical value for 18/8 SS is 9.5E-06 and for Monel is 7.0E-06

 t_f
 flowing temperature (°F)

The orifice resistance coefficient is given by:

$$K_{\rm r} = \frac{1 - \beta^2}{C^2 \beta^4}$$

C		Cd
	- (1	$-\beta^4)^{0.5}$

 Where
 C
 orifice flow coefficient

 d
 orifice bore

 β
 d/D (Note: for better measurement try and keep in the range 0.3 to 0.6)

The equation for viscous liquid flow is given by:

$$\mathbf{S} = \frac{\mathbf{W}_{m}}{\mathbf{N} \ \mathbf{D}^{2} \mathbf{F}_{a} \mathbf{F}_{m} \mathbf{F}_{c} \sqrt{\mathbf{G}_{f}} \sqrt{\mathbf{h}_{m}}}$$

The application of the viscosity correction factor F_c for plant operational measurements and control is rarely justified. Viscosity limits for 1% calculation tolerance vary in the range of 1 to 8 cps depending on the β ratio, keeping <0.6, and pipe size. F_c can vary in the range of 1.0 to 1.09. Refer to L.K.Spink Flow Handbook for more information.

TOPIC REVIEW

Universal Equation for steam, vapours or gases is given by:

$$S = \frac{W_{m}}{359 D^{2} F_{a} F_{m} F_{c} Y \sqrt{v_{f}} \sqrt{h_{m}}} \qquad \qquad v_{f} = \frac{m_{w} p_{f}}{10.73 T_{f} z_{f}}$$

Where

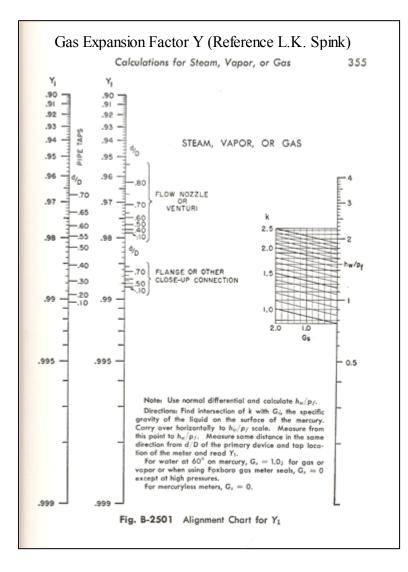
viscosity or Reynolds number correction, Re >50000 using $F_c = 1.0$ is acceptable. molecular weight of flowing fluid flowing pressure (psia) flowing absolute temperature (°R=°F + 460) gas expansion factor determined from alignment chart shown below

S for Flange, Vena Contracta, Radius or Corner Taps

S for Full Flow Taps (2½D and 8D)

 $\mathbf{F}_{\mathbf{c}}$

mw


 P_{f}

T_f Y

mined from alignment chart shown below

$$S = 0.598\beta^{2} + 0.01\beta^{3} + 0.00001947\beta^{2} (10\beta)^{4.425}$$

$$S = 0.58925\beta^2 + 0.2725\beta^3 - 0.825\beta^4 + 1.75\beta^5$$

The sizing procedure is to determine an initial S and then d/D assuming $F_c = 1$ and Y =1. Then use alignment chart to determine Y and obtain new d/D from modified S/Y value.

TOPIC REVIEW

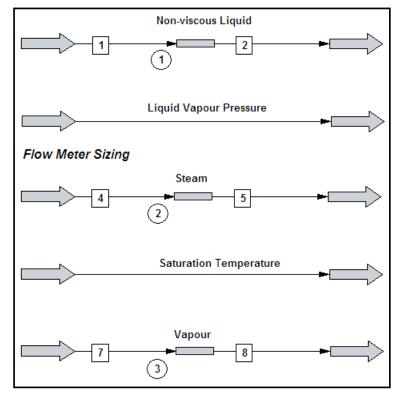
If steam is wet the specific weight is adjusted as follows where q is the steam dryness (vapour) fraction:

$$v_{\rm fw} = \frac{v_{\rm f}}{q}$$

If a drain or vent hole (d_h) is used to prevent the build up of entrained gas or liquid, the orifice bore is reduced in accordance with the following relationship:

$$\mathbf{d}_{\mathrm{a}} = \mathbf{d} \left(1 - 0.55 \left(\frac{\mathbf{d}_{\mathrm{h}}}{\mathbf{d}} \right)^2 \right)$$

The orifice sizing data input requires entry of the orifice plate material thermal expansion factor; typical values are shown in the table below.


Orifice Plate Thermal Expansion Factor F _a					
Material	Thermal Expansion Factor				
Waterial	in/in °F				
Carbon Steel	6.7 E-06				
Stainless Steel ANSI 304	9.6 E-06				
Nickel alloy	13.3 E-06				

In sizing metering sections, the pipe should be sized to satisfy reasonable pipe line velocities which are summarised in the Appendices.

The flow meter differential, h_m , is typically set in the range 100 to 200 in wc for liquids and in the range 25 to 50 in wc for gases; being adjusted to achieve an acceptable β ratio in the range 0.3 to 0.6.

CHEMCAD MODEL

The CHEMCAD model Flow Meter Sizing is set up with streams suitably configured for liquids, steam, vapours and gases as shown below. Dummy streams are used to determine liquid vapour pressure and steam saturation temperature. Data Maps are defined to interface with the relevant Worksheet LIQUID, STEAM or VAPOUR of the Flow Meter Sizing spreadsheet.

MODEL CONFIGURATION

An orifice plate is sized by selecting Sizing – Orifice on the main Toolbar. Sizing is carried using the stream properties of the selected stream. The data entry Window is as follows:

🚆 - Orifice Sizing -						×
Pressure taps: Flange Corner D and D/2 2 1/2 D and 8D				Stream ID:	1	
Pipe inside diameter Differential pressure	2.067	in in	of	water at 68 F, 1	14.696 psia	
Expansion factor	9.5e-006	inches/inch	nes F			
Help				Cancel	ок	

RESULTS

Sizing Spreadsheets have been created to analyse the CHEMCAD model calculation results and to obtain Physical Property Data to allow validation of orifice sizing results. In all cases agreement was found to be within -0.75% accuracy. Sizing parameters and thermal expansion factors are calculated using the relevant equations and values for d/D and Y were determined manually from the appropriate tables in L.K.Spink.

The sizing spreadsheet for Liquid orifice plate sizing is shown below:

Orifice Plate Sizing			Liquid									
Process Fluid			Water				CHEMCAD OF	RIFICE SIZI	NG TOOL	RESULTS		
								Vapor		Liquid		
Design Mass Flow	Wm	lb/h	10000.0				Flowrate	0	lb/h	10000	lb/h	
							Flowrate	0	ft3/hr	166.4175	ft3/hr	
Temperature	t _f	deg F	200.00				Density	0	lb/ft3	60.0898		
Inlet Pressure	Pf	psia	30				Pressure taps	Flange				
							Differential pressure	100	in of water			
Liquid Density	ρ	lb/ft3	60.090				Reynolds No.	100912.1				
							Sm (Sizing parameter)	0.0839				
Liquid Viscosity	μ	ср	0.303				Cd (Discharge coefficient)	0.601				
							Beta ratio (d/D)	0.3719				
Vapor pressure at flowing conditions		psia	11.531				Pipe inside diameter (D)	2.0669				
							Bore size (d)	0.7686	in			
Meter differential pressure	h _m	in wg	100.0				Kr (Flow resistance factor)					
							This data copied and paste	ed from CHI	EMCAD orif	ice sizing t	ool result	
Liquid specific gravity	Gf		0.9650									
							Select Pressure Taps					
Calculated pipe velocity	V	ft/s	0.90				Flange, Radius,Corner Taps	-				
Pipe internal diameter	D	in	2.067									
	-						Use full flow taps for restric	tion orifice	plate			
Material thermal expansion	α	in/in degF	9.50E-06									
· · · · · · · · · · · · · · · · · · ·												
Thermal expansion factor	Fa		1.0025E+00		$F_{a} = 1 + 2\alpha$	(tr-68)	1	Source for	Scale L.K.	Spink Tabl	es 12 and 1	3
											or Corner T	
Sizing parameter	S		0.0838	0.0839		Wm				3		425
Goal Seek E30 = E29 changing F33	Scale		0.0841		$S = \frac{1}{ND^2}$	F₁F _m √G	<u>5.</u>	S = 0.59	8β ⁻ +0.01	5 +0.0000	1947β ² (10	B) [
Pressure Taps		Flange	,Radius,Corner			rara yu	r VII.m					
								Full Flow	Taps (2½D	and 8D)		
Beta Ratio	d/D		0.3719	0.3719				0.050	2002 . 0.0	72503 0	$825\beta^{4}+1.7$	50 ⁵
								8 =0.585	25p +0.2	/25p -0.	825p +1./	эр
Bore Size	d	in	0.7686	0.7686								
	β				C C.			Manual (CCD Entry			
Discharge Coefficient	Cd		0.6010		0 - в	4)=						
	С			0.6068	"	1			lour Key			
Flow Resistance Factor	Kr		122.36	122.32	$1 - \beta^2$				ted Data			
					$K_r = \frac{1-\beta}{C^2 \beta^4}$			Data f	to CCD			
Reynolds Number	Re		1.009E+05		C.B.			Data fr	om CCD			

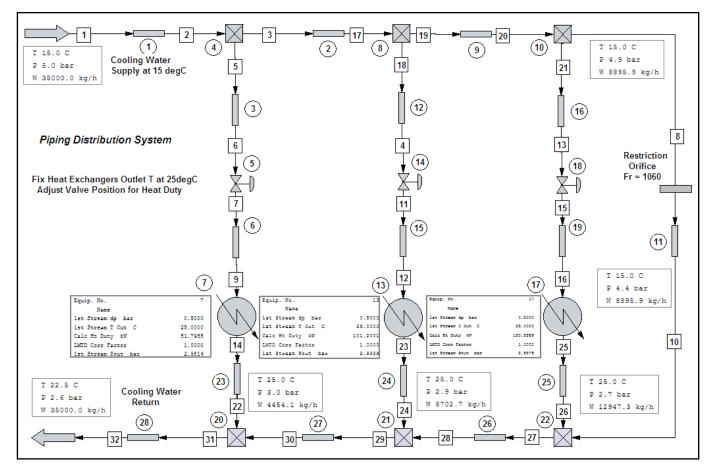
RESULTS

The sizing spreadsheet for Steam orifice plate sizing is shown below:

Orifice Plate Sizing			Steam						
Molecular weight			18.01					CHEMCAD ORIFICE SIZ	
									Vapor
Design Mass Flow	Wm	lb/h	10000.0					Flowrate	10000 lb/h
								Flowrate	20582.63 ft3/hr
Temperature	t,	deg F	450.00	400.002				Density	0.4858 lb/ft3
								Gas isentropic exponent	1.3236
Inlet Pressure	Pr	psia	246.92						
								Pressure taps	Flange
Compressibility	Zr		0.938					Differential pressure	200 in of wat
Isentropic Coefficient			1.3236					Reynolds No.	1157226
Dryness fraction	q		1.000					Sm (Sizing parameter)	0.2983
								Gas expansion factor	0.9894
Specific weight	Vr	lb/ft3	0.4857			mwp.		Cd (Discharge coefficient)	0.6069
					$V_f = -$		-	Beta ratio (d/D)	0.667
Meter differential pressure	h _m	in wg	200.0		10	.73 T _f	Zf	Pipe inside diameter (D)	3.067 in
								Bore size (d)	2.0456 in
Reynolds number correction	Fo	Re>50000	1.0000					Kr (Flow resistance factor)	6.1083
	hm/pf			0.8100				This data copied and pas	sted from CHEMCAD
Expansion Factor	Y		0.9894	0.989				orifice sizing	tool result
				Y from alig	nment cha	t in Data w	ith initial d/D		
Pipe internal diameter	D	in	3.067						
Pipe velocity	v	ft/s	0.90						
Material thermal expansion	α	in/in degF	9.60E-06						
Thermal expansion factor	Fa		1.007E+00		Fa=1+2	α (t _f -68)]		
					Initial S fo	d/D assur	ning Fc = 1 and Y =	1	
Sizing parameter	S		0.3015	0.2983					
	-				S =	W _m			
Pressure Taps			Flange		359	D~F _{&} F _m F _c	Y √v _f √h _m		
Beta Ratio	d/D	0.3 to 0.6	0.667	0.662					
									Manual CCD Entry
Bore Size	d	in	2.0456	2.030308	-0.75%				
									Cell Colour Key
Discharge Coefficient	Cd		0.6069			_			Calculated Data
	C			0.6777	1-6	2	$C = \frac{C_d}{C_d}$		Data to CCD
Flow Resistance Factor	K _r		6.1083	6.3694	17 - ·		$\left(1 - \beta^4\right)^{\frac{5}{2}}$		Data from CCD
			0.1000	0.0004	$\frac{\kappa_r}{C^2 \beta}$		¥ P/		2444
Reynolds Number	Re		1.16E+06			_			

The sizing spreadsheet for Vapour or Gas orifice plate sizing is shown below:

Orifice Plate Sizing			our or Gas								
		Ni	trogen								
Molecular weight			28.01						CHEMCAD ORIFICE SIZ	NG TOOL F	RESULTS
										Vapor	
Design Mass Flow	Wm	lb/h	1000.0						Flowrate	1000	lb/h
									Flowrate	7146.473	ft3/hr
Temperature	t.	deg F	100.00						Density	0.1399	lb/ft3
									Gas isentropic exponent	1.4097	
Inlet Pressure	Pr	psia	30.00								
									Pressure taps	Flange	
Compressibility	Z,		1.000						Differential pressure	50	in of water
Isentropic Coefficient			1.4097						Reynolds No.	166652.7	
									Sm (Sizing parameter)	0.2464	
									Gas expansion factor	0.9804	
Specific weight	Vr	lb/ft3	0.1398	0.1399					Cd (Discharge coefficient)	0.6095	
					Ve =	m _w p _f .73 T _f z	-		Beta ratio (d/D)	0.6174	
Meter differential pressure	hm	in wg	50.0	1.6667	10	.73 Trz	-		Pipe inside diameter (D)	2.067	in
				-					Bore size (d)	1.2762	in
Reynolds number correction	Fo	Re>50000	1.0000						Kr (Flow resistance factor)	9,7969	
	hm/pf			1.6667					This data copied and pas		
Expansion Factor	Y		0 9804	0.9800					orifice sizing		
Expansion ractor	•	_			ment cha	t in Data witl	h initial d/F)	United Sizing	obricoun	
Pipe internal diameter	D	in	2.067	r nom angi	intent entai	c in Data with	r iniciar a/c	/			
Pipe velocity	v	ft/s	79.91								
Material thermal expansion	α	in/in degF	9.50E-06								
Material thermal expansion	u u	in/in degi	0.00E-00								
Thermal expansion factor	Fa		1.001E+00		$F_a = 1 + 2c$	ι (t _f -68)					
memar expansion factor	1 a		1.0012100		nitial S for	d/D assumir	n Ec - 1 -	and V = 1			
Sizing parameter	S		0.2513	0.2464	nitial 3 lui		igre – ra				
Sizing parameter	3		0.2013	0.2404	s =	Wm					
Pressure Taps			Flange		359 1	$D^2 F_a F_m F_c Y$	Vrvhm				
Pressure raps			r lange					_			
Beta Ratio	d/D	0.3 to 0.6	0 6174	0.615							
	u/D	0.0 10 0.0	0.0174	0.015							
Bore Size	d	in	1.2762	1.271						-	
	u		1.2702	1.271						Manual (CCD Entry
Discharge Coefficient	Cd		0.6095							wanual C	JOD LINUY
Discharge Coefficient			0.6095	0.0504	1-β		C.			0.0	lava Kau
	С		0.7000	0.6584			=	<u></u>			lour Key
Flow Resistance Factor	Kr		9.7969	10.0263	$K_r = \frac{C^2 \beta}{C^2 \beta}$		(ų −β	5)			ted Data
					0 10	_ L					o CCD
Reynolds Number	Re		1.67E+05							Data fro	om CCD


CHEMCAD 6.0 SIZING TOOLS – SERVICES PIPING DISTRIBUTION SYSTEM

PROCESS DESCRIPTION

This case study develops the design of a cooling water distribution system supplying three shell and tube heat exchangers. Cooling Water supply is 35000 kg/h at 25°C and 5 bar pressure. The heat exchanger duties are 50 kW, 100 kW and 150 kW with cooling water return temperatures all set at 25 °C. The piping design is to be based on a 3 m/s velocity allowing for upgrade to 75000 kg/h. A restriction orifice, giving a 0.5 bar pressure drop at the flowing conditions, is to be installed in the spillback line. Control valves are to be sized and used to control heat exchanger cooling water flow to satisfy the design duties.

CHEMCAD MODEL

For practice you can build the model or use the model called "Piping Distribution System" in the electronic media supplied. It is strongly recommended that you work with a copy of this job. The model flowsheet is shown that represents the piping layout .

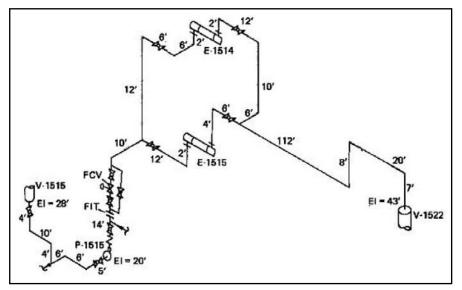
MODEL CONFIGURATION

The key aspect of this problem is the handling of the enlargement and contraction. The reducer fitting must be located in the smaller pipe ie the supply and return equipment headers. The Tees also need careful consideration with the main header UnitOps specified as Flow Through Run, the equipment supply headers as Flow-out Branch and the return equipment headers as Flow-in Branch.

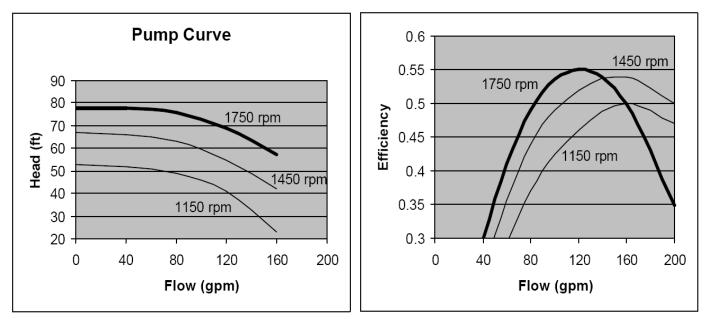
The restriction orifice plate is sized to achieve a 0.5 bar pressure drop at prevailing conditions.

RESULTS

The control valves are sized initially to achieve a 150 kW maximum duty requiring a C_v of 34. Once sized the control valve is positioned manually to adjust the flow to achieve the specified duty whilst maintaining a 25°C outlet temperature. It should be noted that the model as configured is not achieving a pressure balance at the mixers. This could be achieved by the use of the Node UnitOp or replacing the Restriction Orifice with a Control Valve to adjust the return pressure.

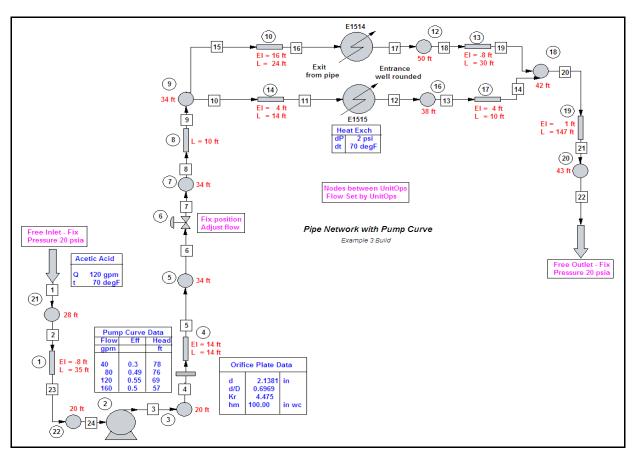

CHEMCAD 6.0 SIZING TOOLS - PIPE NETWORK WITH PUMP CURVE

PROCESS DESCRIPTION (Chemstations Piping Seminar Example 3)


The piping system is to be designed to transport 120 gpm of glacial acetic acid at an inlet temperature of 70°F which is then heated through heat exchangers to 140°F. The outlet pressure must be no less than 20 psia. The piping system and its individual elements are to be sized for typical design conditions.

The piping layout, valves and fittings to be used are shown in the isometric. An orifice plate and control valve is to be installed downstream of the pump to measure and control flow manually. It is required to determine the branched flow split flow and pressure drops in the pipe network

Further more the layout is to be tested to ensure an adequate Net Positive Suction Head (NPSH) is available at the pump suction. The NPSHa is defined as the total pressure available at the pump suction minus the vapour pressure of fluid at pump suction conditions. If the NPSHa is less than that required by the pump then cavitation will result.



The centrifugal pump to be used has the following performance characteristics:

CHEMCAD MODEL

For practice you can build the model or use the model called "Piping Example 3 Build" in the electronic media supplied. It is strongly recommended that you work with a copy of this job. The model flowsheet is shown that represents the piping layout. This problem is solved in CHEMCAD using the Pressure Node UnitOp.

MODEL CONFIGURATION

The Pressure Node UnitOp can be considered a calculator that adjusts the network pressure at the node based on the flowrate. In the network the Node sets the pressure between UnitOps that calculates flow as a function of pressure.

Pipe UnitOps calculate flows based on the P_{in} and P_{out}, the Pump and Control Valve UnitOps calculate flows based on the downstream pressure in the Node; it follows that Node UnitOps located between UnitOps that calculate the flow are set in the "Flow Set by Upstream and Downstream UnitOps".

The pressure at the Inlet and Outlet Nodes of this network are fixed at 20 psi and the stream is defined as Free ie not effected by a UnitOp. The inlet flow could also have been fixed by the Inlet Node.

At a UnitOp there are three variables- P_{in} , P_{out} and F; a single equation constrains the system so specification of any two variables sets the remaining variable.

The Inlet and Outlet Nodes configuration is Fixed Pressure and all other Nodes are Variable Pressure as shown below:

Mode Fixed pressure	V				ID:	Mode Variable pressure					ID:
Pressure at node	20	psia	Minimum pressure	10	psia	Pressure at node	39.3687	psia	Minimum pressure	30	psia
Elevation	28	ft	Maximum pressure	30	psia	Elevation	34	ft	Maximum pressure	80	psia
Flowrate Options Inlet Streams Stream Mode 1 Free inlet s	Value stream		Outlet Streams Stream Mod 2 Flow		Value	Flowrate Options Inlet Streams Stream Mode 5 Flow set	Value by UnitOp	3	Outlet Streams Stream Mod 6 Flow	e set by UnitOp _▼	Value

MODEL CONFIGURATION

The pump discharge line size is determined using the CHEMCAD Sizing > Piping facility using a design velocity of 3 m/s. A discharge line size 0f 3 in was selected and for the suction pipe 4 in, a nominal size larger.

The Pipe UnitOps Method, Sizing Option, Friction Factor and Roughness Factor are configured identically.

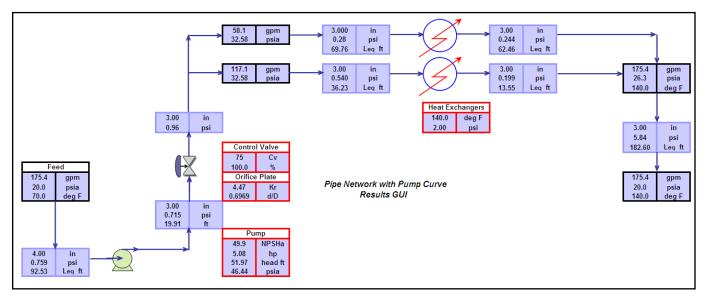
Stream Properties:					(mark)					
Mass flow Ib/h 92575 1563 Heat Transfer Actual dens Ib/h3 65 2869 65 65 100 <td< td=""><td></td><td></td><td></td><td></td><td>💭 - Pipe Sizing an</td><td>d Rating (PIPE) -</td><td></td><td></td><td></td><td></td></td<>					💭 - Pipe Sizing an	d Rating (PIPE) -				
Actual dens Ib/ft3 65.2869										
Actual dens fb/h3 65 2669 ID: 4 Mass flow lb/h 92575 1563 ID: 4 Actual dens lb/h3 65 2869 ID: 4 Visc cP 11811 ID: 4 Pipe Parameters: ID: 4 Sizing option Calculated Next larger Next smaller Schedule 40 40 Flow Regime Single phase Single phase Pipe ID in 3.068 4.0533 Nominal Dia. in 3 4 Overall - Pipe schedule Pipe Jon 10, 7918 Press Drop psi/100ft 3.2011 0.7918 20.3876 Friction Factor 0.0197 0.0196 0.0203 Press Drop psi/100ft 3.2011 0.7918 20.3876 Chaterial Chaterial Commercial Steel Include holdup in dynamic simulation Friction Factor 0.0197 0.0196 0.0203 Commercial Steel Include gas expansion factor.					Specifications	Properties	Calculated B	esults Valves	Fittings	Heat Transfer
Mass flow b/h 92575.1663 Actual dens lb/ft3 65.2669 Visc CP 1.1811 Pipe Parameters: Calculated Calculated Next larger Next smaller Single phase Single phase Single phase Pipe ID in 3.068 4.0533 Nominal Dia. in 3 4 Overall Pipe Sorpop psi/100ft 3.2011 Press Drop psi/100ft 3.2011 0.7918 20.3878 Friction Factor 0.0197 0.0196 0.0203 Press Drop psi/100ft 3.2011 0.7918 20.3878 Chaterial Commercial Steel Include pase expansion factor.	Actual dens lb/ft3	65.2869			opecifications	riopenies		V dives	l norige	noa nanarar
Minutes for Month 000 10/11 000 10/11 000 10/11 000 10/11 Actual dens lb/f3 65 2869										ID: 4
Visc cP 1.1811 Number of segments Pipe Parameters:		92575.1563			Method	2 Single Phase flow				
Pipe Parameters: Calculated Next larger Next smaller Schedule 40 40 40 Flow Regime Single phase Single phase Single phase Pipe Din 3.068 4.0533 2.1316 Nominal Dia. in 3 4 2 Overall Pipe Chameter 14 ft Press Drop psi/100ft 3.2011 0.7918 20.3878 Velocity ft/sec 7.6679 4.3931 15.8861 Liquid only Friction Factor 0.0197 0.0196 0.0203 Press Drop psi/100ft 3.2011 0.7918 20.3878 C Roughness factor 0.00015 ft C Roughness factor 0.00015 ft Ft Pipe Material Commercial Steel Include gas expansion factor.	Actual dens lb/ft3	65.2869			Sizing option	5 Given size, Pin and	Pout, calc flowr	ate 🔻		
Pipe Parameters: Calculated Next larger Next smaller Schedule 40 40 40 Flow Regime Single phase Single phase Single phase Single phase Pipe ID in 3.068 4.0533 2.1316 Pipe Schedule Pipe Schedule Pipe diameter is ID unless schedule is specified Pipe ID in 3.068 4.0533 2.1316 Pipe Schedule Pipe diameter case #2 in Press Drop psi/100ft 3.2011 0.7918 20.3878 Pipe Icaneter one of the following: Pipe diameter case #3 in Friction Factor 0.0197 0.0196 0.0203 Pipe Material Commercial Steel Include sexpansion factor.	Visc cP	1.1811				, .			nente	
Calculated Next larger Next smaller Schedule 40 40 40 Schedule 40 40 40 Schedule 40 40 40 Flow Regime Single phase Single phase Single phase Pipe ID in 3.068 4.0533 2.1316 Nominal Dia. in 3 4 2 - Overall - - - Pres Drop psi/100ft 3.2011 0.7918 20.3876 Velocity ft/sec 7.6679 4.3931 15.8851 Liquid only - - - - Reynolds Number 161360.8 122136.4 232249.8 Friction Factor 0.0197 0.0196 0.0203 Press Drop psi/100ft 3.2011 0.7918 20.3878 Press Drop psi/100ft 3.2011 0.7918 20.3878 Press Drop psi/100ft 3.2011 0.7918 20.3878								ritamber of segn	inorito j	
Schedule 40 41	Pipe Parameters:									
Schedule 40 41		Calculated	Next larger	Next smaller	Disc. Foundation			Die e die eester i	. IN contract coloradate to a	
Pipe ID in 3.068 4.0533 2.1316 Nominal Dia. in 3 4 2 - Overall - - Press Drop psi/100ft 3.2011 0.7918 20.3878 Velocity ft/sec 7.6679 4.3931 15.8851 Liquid only - - Reynolds Number 161360.8 122136.4 232249.8 Friction Factor 0.0197 0.0196 0.0203 Press Drop psi/100ft 3.2011 0.7918 20.3878	Schedule	40	40	40	Fipe diameter	3	in	ripe diameter i	IS ID UNIESS SCREDUIE IS S	pecilieu
Nominal Dia. in 3 4 2 Overall Pipe Length 14 It Pipe diameter case #2 in Press Drop psi/100ft 3.2011 0.7918 20.3878 Elevation ▼ 14 It Pipe diameter case #2 in Press Drop psi/100ft 3.2011 0.7918 20.3878 Friction factor model 0 Churchill ▼ Friction Factor 0.0197 0.0196 0.0203 C Roughness factor 0.00015 It Press Drop psi/100ft 3.2011 0.7918 20.3878 C Roughness factor Include gas expansion factor.	Flow Regime	Single phase	Single phase	Single phase	Pipe Schedule			-Optional pipe case stu	dies	
Nominal Dia. in 3 4 2 - Overall - - - Press Drop psi/100ft 3.2011 0.7918 20.3876 Velocity ft/sec 7.6679 4.3931 15.8851 Liquid only - - Friction factor model 0 Churchill Reynolds Number 161360.8 122136.4 232249.8 Enter one of the following: Include holdup in dynamic simulation Press Drop psi/100ft 3.2011 0.7918 20.3878 C Roughness factor 0.00015 It Press Drop psi/100ft 3.2011 0.7918 20.3878 Include gas expansion factor.	Pipe ID in	3.068	4.0533	2.1316	Die all au ath	14	a			
Press Drop psi/100ft 3 2011 0.7918 20.3876 Velocity ft/sec 7.6679 4.3931 15.8851 - Liquid only - - - - Reynolds Number 161360.8 122136.4 232249.8 Friction Factor 0.0197 0.0196 0.0203 Press Drop psi/100ft 3.2011 0.7918 20.3876 C Roughness factor 0.00015 It C Pipe Material Commercial Steel Include gas expansion factor.	Nominal Dia. in	3	4	2	Fipe Length	14	п	Pipe diameter case #2		ın
Press Drop psi/100ft 3.2011 0.7918 20.3878 Velocity ft/sec 7.6679 4.3931 16.8861 - Liquid only - - - Reynolds Number 161360.8 122136.4 232249.8 Friction Factor 0.0197 0.0196 0.0203 Press Drop psi/100ft 3.2011 0.7918 20.3878 C Roughness factor 0.00015 It C Pipe Material Commercial Steel Include gas expansion factor.	Overall				Elevation T	14	6	Pipe diameter case #3		in
Liquid only Reynolds Number 161360.8 122136.4 232249.8 Friction Factor 0.0197 0.0196 0.0203 Press Drop psi/100ft 3.2011 0.7918 20.3878 C Roughness factor 0.00015 ft C Roughness factor 0.00015 ft C Pipe Material Commercial Steel ▼ Include gas expansion factor.	Press Drop psi/100ft	3.2011	0.7918	20.3878		1	i.			
Reynolds Number 161360.8 122136.4 232249.8 Friction Factor 0.0197 0.0196 0.0203 Press Drop psi/100ft 3.2011 0.7918 20.3878 C Roughness factor 0.00015 It Pipe Material Commercial Steel I Include gas expansion factor.	Velocity ft/sec	7.6679	4.3931	15.8851						
Reynolds Number 161360.8 122136.4 232249.8 Friction Factor 0.0197 0.0196 0.0203 Press Drop psi/100ft 3.2011 0.7918 20.3878 C Roughness factor 0.00015 ft C Pipe Material Commercial Steel I Include gas expansion factor.	Liquid only				Friction factor mo	del 0 Churchill	-		a far dan saite star dattar.	
Press Drop psi/100ft 3.2011 0.7918 20.3878 C Roughness factor 0.00015 ft Pipe Material Commercial Steel Include gas expansion factor.	Reynolds Number	161360.8	122136.4	232249.8				j include noidu	p in dynamic simulation	
Pipe Material Commercial Steel Include gas expansion factor.		0.0197	0.0196	0.0203	Enter one of the f	following:				
Pipe Material Commercial Steel Include gas expansion factor.	Press Drop psi/100ft	3.2011	0.7918	20.3878	C Paushna	an factor 0.00015				
							n			
					Pipe Mate	erial Commercial	Steel 💌	Include das e	xpansion factor	
Help Cancel OK								,		
Help Cancel OK										1 1
					Help				Cancel	ОК

The pump discharge stainless steel orifice plate is calculated using the CHEMCAD Sizing > Orifice tool. It is specified with flange taps, a design differential of 100 in wc and thermal expansion 9.6 E-06 in/in $^{\circ}$ F. The unrecovered pressure loss is accounted for by adding the calculated K_r in the downstream Pipe UnitOp User specified window.

	Vapor		Liquid	
-				
Flowrate	0	lb/h	92575.1563	lb/h
Flowrate	0	ft3/hr	176.7864	gpm
Density	0	lb/ft3	65.2869	lb/ft3
Pressure taps	Flange			
Differential pressure	100	in of water		
Reynolds No.	161361.338			
Sm (Sizing parameter)	0.339			
Cd (Discharge coefficient)	0.6102			
Beta ratio (d/D)	0.6969			
Pipe inside diameter (D)	3.068	in		
Bore size (d)	2.1381	in		
Kr (Flow resistance factor)	4,4749			

User specified fitting:	s/valves			
Туре	L/D,Kr,Ks	Ki	Kd	Count
Kr	4.475			
L/D				
L/D				

To size the control valve from an initial build, copy the pipe network inlet stream to the control valve inlet stream using Specifications > Copy Stream Data and change the pressure to 45 psig. Specify valve with a 20 psi pressure drop and a correction factor of 0.95.


Loadings and Properties				
	Vapor		Liquid	
Flowrate	0	lb/h	92575.1719	lb/h
Flowrate	0	ft3/hr	176.7864	gpm
Density	0	lb/ft3	65.2869	lb/ft3
Total flow	92575.1719	lb/h		
Upstream pressure	39.3687	psia		
Downstream pressure	25	psia		
Critical flow factor	0.98			
Corr. factor for reducers	0.95			
Static head	0	ft		
Seat type Sing	e-Seat			
Flow type Subo	ritical flow			
Calc. coefficient Cvc	50.1999			
Capacity coefficient Cv	75			
Cvc / Cv ratio	0.6693			
Valve size	3	in		

In the example shown no allowance has been made for reducers at the pump suction and discharge which are normally required; as discussed earlier these can have a significant effect and would require additional Pipe UnitOps at the pump inlet and discharge.

RESULTS

The results have been presented in a Graphical User Interface (GUI) format to give a clearer representation. It has been generated using the CHEMCAD Data Map facility. The graphics and reporting have been done using Excel.

The results are shown for the control valve fully open. It can be seen there is adequate NPSH and the discharge pressure criteria have been met. The flow split through the heat exchangers, as a result of the piping layout and resistances, is predicted to be 56.1 gpm and 117.1 gpm.

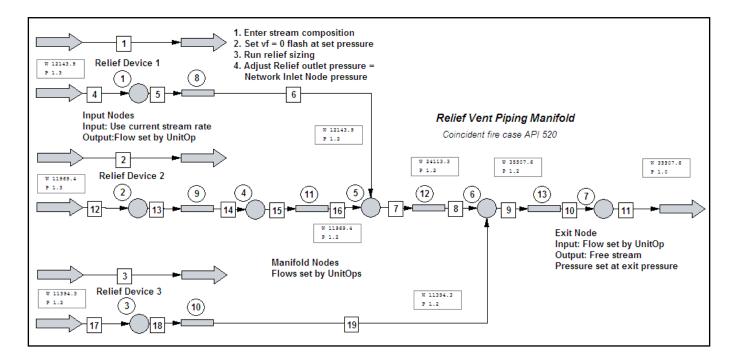
Alternatively a report can be generated using the standard CHEMCAD reporting facilities.

CHEMCAD 6.0 SIZING TOOLS - RELIEF VENT PIPING MANIFOLD RATING

PROCESS DESCRIPTION

This case study investigates the sizing of a relief piping manifold connected to three exothermic reactors; a typical arrangement in a multiple batch reactor facility. Each reactor has been fitted a 4 in graphite bursting (rupture) disc complete with a vacuum support set at 2 barg. are shown below:

The reactor dimensions and contents							
Reactor	Dimensions (m)	Composition	Nozzle (m)				
1	D = 2.0, H = 3.0, Head Ellipsoidal R = 0.67	THF wf = 1, Rx volume vf = 0.2	D = 0.1				
2	D = 1.5, H = 2.0, Head Ellipsoidal R = 0.67	Toluene wf = 1, Rx volume vf = 0.5	D = 0.1				
3	D = 1.8, H = 2.5, Head Ellipsoidal R = 0.67	THF wf = 0.5, Tol wf = 0.5 Rx volume vf = 0.3	D = 0.1				


The relief devices are to be sized for external fire to API 520 standard. To provide a margin of safety the reactors are assumed to be uninsulated. Reactor 1 is considered to be carrying out an exothermic reaction with a heat evolution of 500 MJ/h.

Refer to paper "Emergency Relief Systems (ERS) Sizing Software Methods and Practice" (P&I Design MNL043A) to decide suitable Vessel and Vent Flow models, relief device discharge coefficients and F factor for uninsulated vessel.

The key consideration in this application is to ensure that the vent piping manifold does not restrict the vent flow in the event of a coincident relief. As a general rule sonic flow (ie maximum flow) will be achieved in the relief device if $P_{in} > 0.5xP_{0ut}$, where P_{out} is the manifold back pressure.

CHEMCAD MODEL

For practice you can build the model or use the model "Relief Vent Piping Manifold" in the electronic media supplied. It is recommended that you work with a copy of this job.

MODEL CONFIGURATION

The Inlet Nodes are specified in Variable Pressure Mode using current stream rate with the outlet flow being constrained by the UnitOp. All Nodes in the network use Variable Pressure mode with all Flows set by UnitOp. The Outlet Node is set at a Fixed Pressure and Free outlet stream. This outlet Node can be used to test the effect of back pressure build up in downstream equipment.

Mode Variable pressure	ID: 1	Mode Variable pressure	ID: 5
Pressure at node 1.33762 bar Minimum pr	essure 1 bar	Pressure at node 1.17125 bar Min	m pressure
Elevation Maximum p	essure 3 bar	Elevation Ma	um pressure 3 bar
		Flowrate Options	Outlet Streams
Flowrate Options	t Streams	Stream Mode Value	itream Mode Value
Stream Mode Value Stream		16 Flow set by UnitOp	Flow set by UnitOp
4 Use current stream rate 5	Flow set by UnitOp	6 Flow set by UnitOp	V/A Fixed Mole Rate

The Pipe UnitOps specifications windows are all specified as shown; note that Beggs and Brill for two phase flow is required and for the Nodes to calculate correctly Sizing Option 5 > Given size, P_{in} and P_{out} , calculate flow. Pipe size and length are entered to suit.

200	- Pipe Sizing an	d Rating (PIPE) -					×					
	Specifications	Properties	Calculated Res	lts Valves	Fittings	Heat Transfer						
	Method	6 Beggs and Brill two	phase flow	•		ID: 12						
	Sizing option	5 Given size, Pin and	Pout, calc flowrate	•								
				Number of segm	ents							
	Pipe diameter	0.3	m		ID unless schedule	is specified						
	Pipe Schedule	40	Γ	Optional pipe case stud	les	_						
	Pipe Length	10	m	Pipe diameter case #2		m						
	Elevation 💌		m	^D ipe diameter case #3		m						
	Friction factor mod	,	•	🔲 Include holdup) in dynamic simulatio	on						
	○ Roughness factor 4.572e-005 m ○ Pipe Material Commercial Steel ▼ Include gas expansion factor.											
	Help				Cancel	ок						

The relief flows from the individual reactor emergency relief devices are determined using Sizing > Relief Device. The relief stream to be studied is selected by single mouse click (note black squares at ends of stream). The stream is specified to represent the relief device inlet at stagnant conditions. The component weight fractions are entered with a nominal flow set at any value, say 1, in units used. The stream pressure is set at the relief pressure and the vapour fraction set at 0 to give the bubble point of the mixture.

The relief device specifications are entered as shown

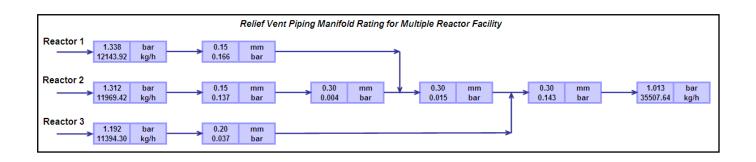
🚆 - DIERS for Relief Device Sizing -	DIERS for Relief Device Sizing -
Vessel Model Selection Inlet/Dutlet Piping Reporting Fluid Properties	Vessel Model Selection Inlet/Outlet Piping Reporting Fluid Properties
Vessel Composition Device type Rupture disc Stream number 1 Device type Rupture disc Mode Rating: Pressure vessel Image: Comparison of the stress	Design method Short cut Latent heat option Fligorous minimum value Vessel model Churr-turbulent Co Vent flow model HEM (Homogeneous Equilibrium Vent flash mode Constant H Vent flash mode Consta
Cylinder length 3 m Head Type Ellipsoidal Image: Comparison of the second	Adequate fire facilities exist F factor Adequate fire facilities exist F factor Capacity certification required Liquid relief only: Vapor relief only: Kp Kb Capacity certifications Kv Capacity certifications
Help Cancel OK	Help Cancel OK

MODEL CONFIGURATION

The Inlet and Outlet piping details are entered. Note that the outlet stream from the relief device is transferred to Stream 4, the appropriate inlet to the vent piping network.

DIERS for Relief Device	Sizing -					
UIERS for Relief Device Vessel Inlet Pipe Inlet pipe diameter Equivalent length Inlet fric. factor	Stzing - Model Selection 0.1 0.15	n niet/Out	Outlet Pipe Outlet pipe o Equivalent I Outlet fric. fa	ength 10 actor	Fluid Properties	
Inlet roughness Data transfer to simulati Transfer inlet to stream Transfer outlet to stream Transfer to Dynamic Ve	m ID 4	m	Outlet rough % Max P dro		m	

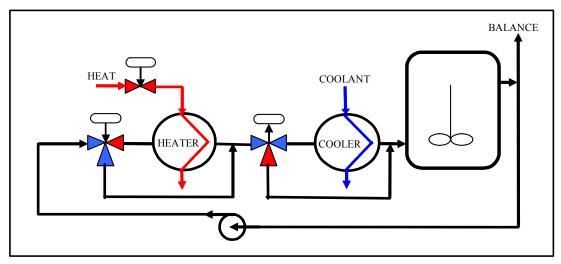
On clicking OK the relief sizing report is generated in Excel as shown.


The relief manifold back pressure is now re-entered as the relief device back pressure and the sizing re-run until the manifold back pressure equals relief device back pressure.

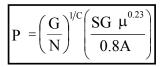
Device type Rupture disc		
Vent model HEM (Homogeneous Equilibrium I	Vlodel)	
Vessel model Churn turbulent model		
Design model API-520/521		
Rating Pressure vessels.		
API 520-521 Adequate firefighting and drainage	facilities do not	exist.
Vertical vessel		
Head type Ellipsoidal		
Head K factor (dpth / R)		0.6
nodu relation (april / rej		0.0
Vessel dimensions:		
Diameter		
	m	
Length (T to T)	m	40.00
Vessel volume	m3	12.23
Liquid level	m	3.33
Initial vapor volume fraction		0.
Height above ground	m	
Fluid properties:		
Vapor mass	ka	20.34
Liquid mass	kg	7657.
Vapor density	kg/m3	8.317
Liquid density	kg/m3	782.5
Surface tension	N/m	0.01476
Liquid viscosity	cP	0.2395
Vapor Z factor		0.9322
Cp/Cv		1.126
Vapor MW		72.10
Liquid heat capacity	kJ/kg-K	2.063
Latent heat	kJ/kg	381.0
Relief device analysis:		
Set pressure	bar	
Back pressure	bar	1.337
% Overpressure	bai	1:337
	с	109.1
Temperature	C	
Discharge coefficient		0.37
C0 radial distribution paramtr		1.
Kb Backpressure corr. factor		
Exposed area	m2	20.82
Environmental factor		
* Additional heat rate	MJ/h	50
Heat rate	MJ/h	3579.
Check adequacy of device for rating case.		
Specified nozzle area	m2	0.00785
Rupture disc diameter	m	0.00102
Calculated nozzle area	m2	0.0065066 (For heat model 1)
The following calculation is base on vent area	0.007854	m2
Calculated vent rate	kg/h	1154
Calc critical rate	kg/h	1154
Calc critical press	bar	2.11
Nozzle inlet vap. mass fraction		0.830
Device inlet density	kg/m3	9.996
Nozzle inlet vap. vol. fraction		0.9978

RESULTS

The results have been presented in a Graphical User Interface (GUI) format to give a clearer representation. It has been generated using the CHEMCAD Data Map facility. The graphics and reporting have been done using Excel.


Note that the manifold back pressure is < 0.5 x the set pressures of the relief devices which verifies that the relief venting is not being reduced by the manifold for a coincident relief scenario.

CHEMCAD 6.0 SIZING TOOLS - REACTOR JACKET CIRCULATION STUDY


PROCESS DESCRIPTION

This Case Study investigates a batch reactor temperature control system which uses a jacket recirculation loop as shown in the schematic below. It was required to determine recirculation system pressure drops, size the pump and confirm satisfactory jacket side heat transfer film coefficients.

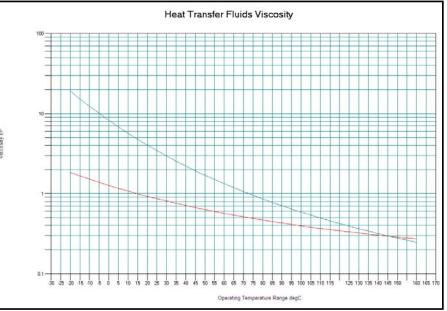
This arrangement requires an adequate recirculation flowrate determined by the reactor size and number of mixing nozzles. The jacket inlets have mixing nozzles fitted to induce a rotational flow in the jacket and enhance heat transfer. Nozzles should be fitted to induce circulation in the same direction of rotation. Inadequate flow and / or high viscosity at low temperatures will result in poor heat transfer and could result in loss of thermal stability when carrying out exothermic reactions.

CHEMCAD does not predict the pressure drop across the mixing nozzles, so the Pfaudler Balfour correlation, shown below, is used. The pressure drop was calculated in Excel and transferred interactively to the model.

Where G circulation flow (US gpm)

- P jacket pressure drop (psi)
- SG specific gravity
- μ viscosity (cps)
- N number of agitating nozzles
- A, C constants depending on nozzle size

Note: Total jacket pressure drop = 1.25 x Nozzle Pressure


	Mixing Nozzle Constants and M	laximum Recommended Flow	
Size (ins)	A	С	Maximum Flow (m3/h)
3.0	700.0	0.5	43
2.0	144.0	0.5	17.0
1.5	60.0	0.51	9.0
1.25	36.8	0.48	

The case study is based on a Pfaudler Balfour AH 500-LL glass lined reactor with two 1.5" mixing nozzles fitted and a jacket circulation rate of 16 m^3 /h using a nominal pipe size of 2 in.

The jacket operating temperature range was -20°C to 160°C and heat transfer fluid Dowtherm J was selected as being suitable. User component 50% Ethylene Glycol / Water mixture at -20°C was the coolant available on plant.

PROCESS DESCRIPTION

The viscosity temperature graph, shown below, has been obtained from the Thermophysical - Data Base - Plot Properties facilities in CHEMCAD.

The jacket side film coefficient is calculated from the following correlations:

$$E = \frac{D_2^2 - D_1^2}{D_1}$$

Where

Е equivalent diameter of jacket space for heat transfer

 D_2 jacket inside diameter (in) shell outside diameter (in) D1

The modified Reynolds Number due to inconsistent units is given by:

$$R = \frac{39.75 \text{ G SG}}{E \mu \text{ N}^{0.5} \text{DN}^2}$$

DN Where mixing nozzle diameter (in) and all other symbols as previously noted

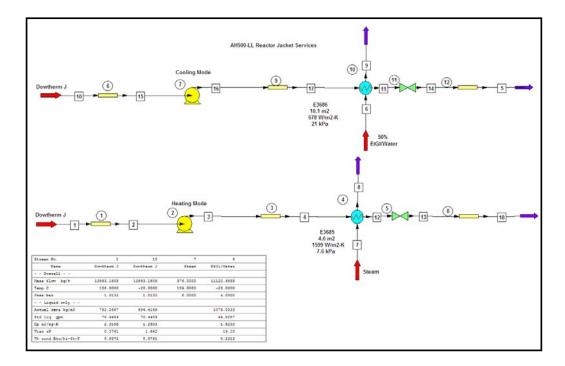
For turbulent flow conditions in the jacket, Re > 60, the jacket film coefficient is calculated from:

$$h = \frac{433 \ k \ R^{0.66}}{E} \left(\frac{C_{p}\mu}{k}\right)^{0.333}$$

For laminar flow conditions in the jacket, $Re \le 60$, the jacket film coefficient is calculated from:

$$h = \frac{6.14 \ k \ R^{1.7}}{E} \left(\frac{C_{p}\mu}{k}\right)^{0.333}$$

k


h

μ

thermal conductivity jacket film coefficient C_{p} specific heat viscosity

CHEMCAD FLOWSHEET

For practice you can build the model or use the model called TCMCIRCDOWJ in the electronic media supplied. It is strongly recommended that you work with a copy of this job. The model flowsheet is shown that represents the piping layout.

MODEL CONFIGURATION

The Pipes Sizing Tool is suitable for an initial assessment of pipe sizing, say for initial estimating purposes, but when progressing to detailed design the Pipe UnitOp is used. This UnitOp provides extensive sizing methods coupled with the facility to enter elevation changes, pipe fittings and valves. In this case ball valves are being used and their treatment is discussed in Appendix I.

The inlet stream pressure is set to 1.25 bar being equivalent to the pad pressure of the system; two cases are used to study the behaviour at minimum and maximum temperatures.

The pump UnitOp is used in its simplest format, being set for pressure increase, which is then adjusted manually until the outlet stream pressure is equal to 1.25 bar. This mode is acceptable in this configuration but would not be suitable if a recycle was involved as it would add the specified pressure increase on each iteration. Pump curves can be introduced if required.

The jacket pressure drop is catered for by using the Valve UnitOp. The pressure drop is calculated in Excel using the prevailing Stream conditions and then transferred to the model using the Data Mapping feature. The heat exchanger pressure drop is entered into the simplified Heat Exchanger UnitOp.

🚆 - Pump (PUMP) -	🖌 👷 - Valve (VALV) -	
Specifications Cost Estimation		ID: 10
Pump operating mode © On ID: 7 Mode Specify pressue increase ♥ Pressue increase 2.7 bar	ID: 11 Close valve completely (turn valve off) Enter one of the options: Outlet pressure Pressure drop 1.59491 bar	Pressure Drops: (defaults=0) Stream 6 0.309 bar Stream 17 0.21 bar
Efficiency 0.475996 Performance curve calc option Calculated results: NPSH(svalable) 15.5041 m Calculated power 2.44749 kW Calculated Pout 4.05503 ber Head 30.782 m Vol. flow rate 58.3406 gpm	Dew point temp C Bubble point temp C Help Cancel OK	
Help Cancel OK		

RESULTS

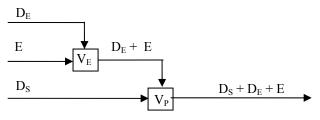
The control (supervisory) spreadsheet TCMCIRCDOWJ for this job is shown below. The input stream parameter conditions can be defined here and stream physical property data, as required, is mined from the model for calculation purposes.

1	Flow(Std)	Density	Viscosity	Temperature	Jacket DP	Pump	Head	Pump NPSH	Conductivity	Specific Heat	V1553 I	Reactor AH-8	500-LL Dim	ensions	Equivalent	Modified	Jacket Filn	n Coefficient
2	G	ρ	μ	t	P	Pout	Н	H	k	Ср	[)2	C	01	Diameter	Reynolds #		h
3	gpm(US)	kg/m3	ср	deg C	bar	bar	m fluid	m fluid	Btu/ft h F	Btu/lb F	mm	in	mm	in	E	Re	Btu/ft2hF	W/m2K
4	70.45	751.74	0.28	158.57	0.87	3.27	26.4	10.53	0.057	2.320	1607	63.3	1535	60.43	5.802	337.56	444.62	2524.5
- 5	kg/h	gpm(US)			psi	m wg	H×1.2				Refer	ence: K.Tho	mpson 04/	09/06				
6	13883.18	81.31			8.84	33.38	31.72											
7	gpm(US)	kg/m3	ср	degC	bar	bar	m fluid	m fluid	Btu/ft h F	Btu/lb F							Btu/ft2hF	W/m2K
8	70.45	894.30	1.84	-19.84	1.59	4.10	30.8	15.90	0.079	1.253		$D^2 - D$	2	39.7	5 G SG	60.20	271.06	1539.1
9	kg/h	gpm(US)			psi	m wg	H×1.2					$E = \frac{D_2^2 - D}{D_2^2}$	1	R =	$N^{0.5}DN^2$			
10	13883.18	68.35			16.26	41.76	36.94					- D1		Ľμ	IN DIN			
11																		
12	Nozzle D	Nozzle	Coeffi	icients	G 1/c (3G μ ^{0.23}	V1553		n Case				- 12(0	0.333			- 0.66 (0	0.333
13	in	Number	A	С	$P = \frac{0}{N}$	0.8A	500 gal	Fluid	m3/h			$h = \frac{6.14}{1000}$	k R ^{1.7} C	pμ		$h = \frac{433}{1}$	(R ^{0.66} (pμ
14	1.5	2	60	0.51		0.0A	ooo ga.	Dowtherm J	16.0			" E		k		" I		k
15													× ×	- /			× .	- /
16					ic Friction Loss \$	Summary				Cell Colo			Re ≤ 60				Re > 60	
17	Mode	Suction	Discharge	Heat Exch	Jacket	Return	Total E	ischarge Frict)	ion Loss	Calculate								
18		bar	bar	bar	bar	bar	bar	m wg	m fluid	Data to	CCD							
19	Heating	0.185	0.653	0.078	0.866	0.114	1.712	17.460	23.226	Data fron								
20	Cooling	0.169	0.592	0.210	1.595	0.103	2.500	25.494	28.507	CCD Valida	tion Data							

This feature provides the designer with very powerful facilities for performing calculations external to the model and testing for their impact on performance. It also allows the model performance to be validated against established engineering correlations, in other words provides an independent check.

The model is set up to determine the pressure drop and pump characteristics at the maximum and minimum operating temperatures.

Initially the design proposed the use of a 50% Ethylene Glycol / Water mixture directly on the jacket. However it was established that laminar conditions were prevalent on the jacket, resulting in unacceptable nozzle pressure drops and heat removal capabilities. The use of Dowtherm J provided satisfactory thermal and hydraulic conditions.


The design case for the pump head was at the minimum operating temperature requiring a head of 30.8 m of fluid at a discharge pressure of 41.8 m wg. The jacket pressure drop was calculated, at minimum temperature, as 1.59 bar; this value was transferred to the model UnitOp Valve. The design case for NPSH occurred at the maximum operating temperature with 10.53 m fluid being available.

This model can be used for studying similar systems using any selected heat transfer fluid.

CHEMCAD 6.0 SIZING TOOLS – STREAM BLENDING SYSTEM STUDY

PROCESS DESCRIPTION

This Case Study investigates a flow blending application in which a "wild" flow from a ship offloading facility is blended with an additive stream of varying composition to achieve a preset blend specification. The basic flow diagram and nomenclature used are shown below:

Where **D**_E Diesel in Methyl Ester Flow (m^{3}/h)

Methyl Ester Flow (m^3/h) Е

Methyl Ester Volume Fraction VE

Ds Diesel Flow from Ship (m^3/h)

DP Bio-diesel Blend Flow (m^3/h)

Bio-diesel Product Volume Fraction V_P

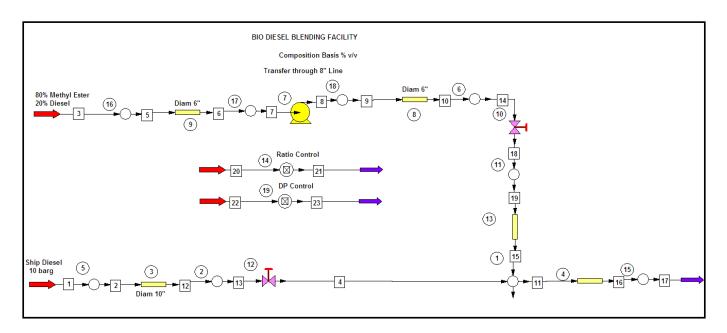
$$\mathbf{V}_{\mathbf{E}} = \frac{\mathbf{E}}{\mathbf{E} + \mathbf{D}_{\mathbf{E}}}$$
 rearranging gives $\mathbf{D}_{\mathbf{E}} = \frac{\mathbf{E} \left(\mathbf{1} - \mathbf{V}_{\mathbf{E}} \right)}{\mathbf{V}_{\mathbf{E}}}$

Substituting for D_E $V_P = \frac{E}{E + D_E + D_S}$ gives $E = \frac{V_P D_S}{(1 - V_P / V_E)}$ and $\frac{D_E + E}{D_S} = \frac{1}{(V_E / V_P - 1)}$

We can now determine the Methyl Ester flow required to achieve a specified product blend volume fraction knowing Ship Diesel Flow and Methyl Ester volume fraction in the Methyl Ester / Diesel mixture. This relationship is used to derive the control system set point.

The process flow ratio is calculated from the equation

$$\frac{\mathbf{D}_{\mathrm{E}}+\mathbf{E}}{\mathbf{D}_{\mathrm{S}}}=\frac{1}{\left(\mathbf{V}_{\mathrm{E}}/\mathbf{V}_{\mathrm{P}}-1\right)}$$


which gives the following results

	Ester Blend to S	Ship Flow Ratios				
Methyl Ester	Product Blend	V _E / V _P	Ship to Ester Blend			
%	%	VE/VP	Flow Ratio			
100	15	6.667	0.176			
	10	10.0	0.111			
	5	20.0	0.053			
80	15	5.33	0.231			
	10	8.0	0.143			
	5	16.0	0.067			

The above relationship allows the process operator to set the final Product blend volume fraction by simply entering the Methyl Ester blend and final Product blend volume fractions. The control system flow ratio will be derived automatically.

CHEMCAD FLOWSHEET

For practice you can build the model or use the model called BLENDCONTROL in the electronic media supplied. It is strongly recommended that you work with a copy of this job. The model flowsheet is shown that represents the piping layout.

CONFIGURATION

This model is operated in full dynamic mode. To provide the required operational flexibility the blend pump is provided with a variable speed motor to control the pressure drop across the blend flow ratio control valve.

The Pump UnitOp 7 is specified by using the manufacturer's pump curve data using two speed lines as shown below:

Specificat	ions	Cost	Estimation	
^D ump operating mode	● On ● Off		ID: 7	
Mode Specify per	formance curve 💌			
Number of speed line	es 2			
Pump speed	-	PM		
Scale factor				
fficiency	0.677409	Perform	nance curve calc o	option
Calculated results:		Fixed f	lowrate, calc Pout	
NPSH(available)	n		Check here to ca	
Calculated power	, 84.9961 k	w	This assumes det specified in the flo	
Calculated Pout	14.568 E	ar		
Head	154.184 n	1		
Vol. flow rate	158.297 n	i3/h		
	,			

👺 - Pump Perform	ance Curve -		👺 - Pump Perforr	mance Curve -	
RPM [15	00 Efficiency	Head	RPM 2960 Vol. flowrate	Efficiency	Head
m3/h	fractional (0 - 1)	m	m3/h	fractional (0 - 1)	m
1e-006	1e-006	42.84	1e-006	1e-006	163.2
40	0.43	40.2	40	0.26	161.16
80	0.64	39.78	80	0.46	160.14
120	0.7	35.7	120	0.59	159.12
160	0.68	26.52	160	0.68	155.04
200	0.25	15	200	0.72	147.9
240	0.15	10	240	0.74	138.72

The blend ratio between Streams 14 and 15 is controlled at a preset value using Controller UnitOp 14 to adjust Control Valve UnitOp 10 position. The pressure drop across this valve is controlled using Controller UnitOp 19 to adjust Pump UnitOp 7 speed.

RESULTS

The plots in the Excel control sheet calculates the results for 80% and 100% Methyl Ester transfer to T 93 for product blends of 5%, 10% and 15%. The Excel spreadsheet is provided with a "Row Insert" macro which allows CHEMCAD model results, after each iteration, to be transferred to a new blank row which, in turn, results in a column of data to provide the plots as shown. The CHEMCAD model is controlled from an Add In function available from CC5 and the macro is controlled from the Start / Reset Control buttons.

For convenience a Dynamic Model is used to allow for Methyl Ester blend changes to be entered during the run. The spreadsheet enables the CHEMCAD model results to be validated by independent calculation and helped in the development of a suitable control strategy.

FCV 02 DP SP 2.00 bar MV 6.49							XL CALCU	ESULT LATED			_	_		PUM	P PRESSURE		
bar MV 6.49					er Paramet					OW RATIO		14 5 12	1				
			Storage B Product B		0.8000	vf vf	Set in CC 0.1497		SP /	0.067		01 (Dar	11		-		
%			Total Bler Ship Flow		45.64 684.63	m3/h m3/h			MV %	0.231		PRESSURE (bar)	3				
OP 70.97			Product F	low	730.28 0.067	m3/h Ratio			OP	40.00		1 4	4				
A/M AUTO									A/M	AUTO XIC 01					4 ⁵⁰ 25 ⁵⁰ 25 ⁹⁵ RUN TIM	с Е 2 ^{4:7,6} 23 ^{:2,6}	22 ³⁵ 21 ⁴⁴ 25 ⁵⁰
			16.12	deaC		16.12	deaC			16.12	deaC						
С			14.57	bar		14.48	bar		ki→	8.40	bar			Length	437.0	m	
	→)-							- 1	N								
	\searrow		0.00	vvi		0.00	WI			0.00				Butterfly	1	#	
		01				V 01			/ 02		864.60	kg/m3		90 Bend	6	#	
	2536.2	rpm			750	Cv		195	Cv		5.69	cps		T In Run	1	#	
								40.00	%		Ester	PPD		Tank Fa	arm Trans	fer Run	
C	0.68		Joob		100.00	%						15 22	Joob			15 22	degC
r													-				bar
'n						⇖┝≻─		807.15	ka/m3		~			817.94	ka/m3		m3/h
								2.78	cps					3.09	cps	0.1497	wf
								Diese	I PPD					Blend	I PPD	Т	93
	SHIP FLOW	v					BLEN	ID TOTAL FL	.ow			14.00		LINE P	RESSURE		
				<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>						00.21 00.00 00.8 ESSURE (Parl) 00.0 00.0							
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	చ్చి చించిం	\$ \$	~ ~ ~			50	5 8 5		to de Co	4 Co 4		2.00				- 40 Az	هد هر ک
	C	DPIC 01	DPIC 01 C C A B C C C C C C C C C C C C C	AUT O DPIC 01 C C C C C C C C C C C C C	DPIC 01 C C C C C C C C C C C C C	AUTO DPIC 01	AUTO DPIC 01 DPIC 01 DPIC 01 C C C r P 01 P 01	AUTO DPIC 01 DPIC 01 DPIC 01 DPIC 01 DPIC 01 DPIC 01 DPIC 01 DPIC 01 DPIC 01 DPIC 01 16.12 degC 16.12 degC 14.48 m3/h 0.80 wf DECV 01 FCV 01 FCV 01 FCV 01 FCV 01 SHIP FLOW SHIP FLOW SHIP FLOW Model Reconciliation Model Reconciliation BLEN SHIP FLOW Model Reconciliation BLEN SHIP FLOW Model Reconciliation SHIP FLOW SHIP FLOW	AUTO DPIC 01 DPIC 01 DPIC 01 C C T DPIC 01 DPIC 01 DPIC 01 C C T DPIC 01 DPIC 01 DPIC 01 DPIC 01 C C T DPIC 01 DPIC 01 DPIC 01 C DPIC 01 DPIC 01 C DPIC 01 C DPIC 01 C DPIC 01 DPIC 01 C DPIC 01 C DI S.44 0.80 W 100.00 S DI S DI S	AUTO DPIC 01 DPIC 01 DPIC 01 DPIC 01 DPIC 01 DPIC 01 DPIC 01 DPIC 01 DPIC 01 DPIC 01 16.12 degC 14.57 14.57 158.44 0.80 wf 0.80 wf 0.80 wf DECV 01 FCV 01 FCV 01 FCV 02 FCV 02 FCV 02 Still FLOW SHIP FLOW Dissel PPD SHIP FLOW DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV DECV	AUTO DPIC 01 DPIC 01 DPIC 01 DPIC 01 DPIC 01 DPIC 01 DPIC 01 C C C C C C C C C C C C C	AUTO       Model Reconciliation       ATM       AUTO         DPIC 01       16.12       degC       16.12       degC         14.57       158.44       0.80       wf       0.80       wf         158.44       0.80       wf       0.80       wf       0.80       wf         2536.2       rpm       750       Cv       195       Cv       5.69         85.0       kW       100.00       %       40.00       %       Ester         0.68       u       100.00       %       40.00       %       Ester         0.68       u       100.00       %       0.80       0.80       0.80         ShiP FLOW       Blender Inlet       Diesel PPD       Diesel PPD       0.90       0.90         300       250       150       150       0.90       150       0.90       0.90         SHIP FLOW       SHIP FLOW       0.90       150       150       0.90       150       0.90       0.90       150       0.90       0.90       150       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.90       0.	AUTO         Model Reconciliation         Auti AUTO           DPIC 01         16.12         degC         16.12         degC           14.57         14.57         14.48         m3/h         158.44         0.80         wf           0         0.80         wf         0.80         wf         0.80         wf           2536.2         rpm         750         Cv         195         Cv         5.69         cps           0.68         n         100.00         %         40.00         %         Ester PPD         15.22         8.08           C         15.00         degC         15.00         gegC         15.22         8.08         690.34         690.34         690.34         690.34         690.34         690.34         690.34         690.34         690.34         690.34         690.34         690.34         690.34         690.34         690.34         690.34         690.34         690.34         690.34         690.34         690.34         690.34         690.34         690.34         690.34         690.34         690.34         690.34         690.34         690.34         690.34         690.34         690.34         690.34         690.34         690.34         690.34	AUTO         Model Reconciliation         AVI AUTO         AVI AUTO           DPIC 01         16.12         degC         16.12         degC           14.48         bar         158.44         m3/h         158.44         0.80         wf           0         90%         90%         90%         90%         90%         90%           158.44         0.80         wf         0.80         wf         0.80         wf           2536.2         rpm         750         Cv         195         Cv         5.69         cps           2536.2         rpm         750         Cv         195         Cv         5.69         cps           0.68         n         100.00         %         40.00         %         Ester PPD           0.68         n         100.00         %         0.80         m3/h         15.22         degC           9.19         bar         684.63         m3/h         807.15         kg/m3         690.34         m3/h           0         0         100.00         %         0         15.22         degC           10         0         100.00         %         0         15.22         degC	AIITO       Model Reconciliation       AIIT       AUTO       AIIT       AUTO         DPIC 01       VIC 01       XIC 01       Site State	AUTO         Model Reconciliation         AUT         AUTO         AUTO           DPIC 01         16.12         degC         16.12         degC         16.12         degC         Diam         0.203           C         16.12         degC         16.12         degC         Diam         0.203           h         0.80         wf         0.80         wf         0.80         wf         0.80         wf         0.80         wf         0.203           P 01         FCV 01         FCV 01         FCV 02         864.60         kg/m3         90 Bend         6           2536.2         rpm         750         Cv         195         Cv         5.69         cps         5.69         cps         11 R Run         1           0.68         n         100.00         %         40.00         %         Ester PPD         Tank Farm Trans           0.68         n         100.00         %         2.78         cps         Blender Outlet         3.09         cps           h         807.15         kg/m3         690.34         m3/h         3.09         cps         3.09         cps         3.09         cps         cps         Blender Outlet         3.09	AITT AUTO DPIC 01 Model Reconciliation DPIC 01 C C C C C C C C C C C C C

The control strategy developed is summarised below:

This flow ratio will be entered into the flow ratio control system which will manipulate the Methyl Ester blend flow control valve to achieve the desired ratio. In the event that the Methyl Ester blend flow cannot achieve the required ratio the control system will cut back the Ship Discharge flow control valve. This cut back feature will be achieved by split range valve operation.

The pressure drop across the Methyl Ester flow control valve will be controlled at an operator preset value by manipulating the duty Methyl Ester blend pump speed. It is anticipated that the optimum pressure drop setting will vary depending on the back pressure resulting from the transfer line to tank farm storage.

The CHEMCAD process model predicted Ship Discharge flows in the range 685 to 758 m³/h for transfers to T93 and 580 to 653 m³/h for transfers to T37 indicating that pipe line pressure drops are controlling.

# APPENDICES

Appendix I	Fluid Flow in Pipes Fundamentals
Appendix II	Flow Meter Considerations
Appendix III	Control Valve Logic in CHEMCAD
Appendix IV	General Information

### Appendix I

### Fluid Flow in Pipes Fundamentals (Reference Crane 410M)

Pressure at the base of a vertical column of fluid

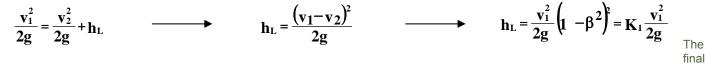
$$p = H \rho$$

**p** pressure (lb/ft²)

H height of column of fluid (ft)

 $\rho$  specific weight of fluid (lb/ft³)

Continuity Equation for incompressible fluid flow:


$$Q = a_1 v_1 = a_2 v_2$$
  $\longrightarrow$   $D_1^2 v_1 = D_2^2 v_2$   $\longrightarrow$   $\frac{D_1^2}{D_2^2} = \frac{v_2}{v_1} = \beta$ 

Bernoulli's Equation in consistent units (ft lb/lb = ft or m)

$$\frac{\mathbf{p}_{1}}{\mathbf{w}} + \frac{\mathbf{v}_{1}^{2}}{2\mathbf{g}} + \mathbf{z}_{1} = \frac{\mathbf{p}_{2}}{\mathbf{w}} + \frac{\mathbf{v}_{2}^{2}}{2\mathbf{g}} + \mathbf{z}_{2} + \sum \mathbf{h}_{L}$$

- **a** area of flow section (ft², m²)
- D circular pipe diameter (ft, m)
- v velocity of fluid (ft/s, m/s)
- g gravitational constant (32.2 ft/s² or 9.81 m/s²)
- **z** potential energy or static head (ft, m)
- hL losses due to friction or work done
- 1, 2 state 1 to state 2, below 1 refers to smaller diameter and 2 to larger diameter

Apply Bernoulli's equation for loss at sudden enlargement from small diameter 1 to large diameter 2



form is equivalent to Crane equation 3.17.1, to express loss in terms of larger diameter:

$$h_{\rm L} = \frac{K_1}{\beta^4} \frac{v_2^2}{2g} = K_2 \frac{v_2^2}{2g}$$

For loss due to sudden contraction

For loss at entry to pipe

For loss at exit from pipe

Refer to Crane 410M A-26 for gradual contractions and enlargements.

$$h_{L} = 0.5 \left(1 - \beta^{2}\right) \frac{v_{1}^{2}}{2g}$$
$$h_{L} = 0.5 \frac{v_{1}^{2}}{2g}$$
$$h_{L} = \frac{v_{1}^{2}}{2g}$$

### Appendix I

### **General Equations for Fluid Flow**

The Darcy equation is used to calculate the friction head loss  $h_L$  (m or ft) of fluid:

$$h_{\rm L} = \frac{f L}{D} \frac{v^2}{2g}$$

f Darcy friction factor, also known as the Darcy-Weisbach or Moody or Blasius friction factor

L equivalent length of pipe (m or ft)

Note that friction factor **f** is dimensionless:

$$f = m \frac{s^2}{m^2} \frac{m}{s^2} = 1$$

In using reference data, care should be taken to ensure the correct friction factor data is being used. Unfortunately, friction factors are sometimes quoted without definition and incorrect use can lead to significant errors. CHEMCAD Pipe UnitOp uses the Darcy form throughout.

The Fanning friction factor  $\mathbf{f}_{\mathbf{F}}$  is commonly used in Chemical Engineering and is related to the Darcy friction factor  $\mathbf{f}$  as follows:

$$f = 4f_F$$

The from of the Darcy equation using the Fanning friction factor becomes

$$h_{L} = \frac{2f_{F}L}{D} \frac{v^{2}}{g}$$
 or in the more common form

For laminar flow conditions (Reynolds Number Re < 2300). The

$$h_{\rm L} = \frac{4f_{\rm F}L}{D} \frac{v^2}{2g}$$

Darcy friction factor is given by  $\mathbf{f} = \frac{\mathbf{64}}{\mathbf{Re}}$  $\mathbf{Re} = \frac{\mathbf{v} \mathbf{D} \mathbf{\rho}}{\mu}$ 

and the Fanning is given by  $\mathbf{f}_{\mathrm{F}} = \frac{16}{Re}$  where

The Jain equation is used to solve directly for the Darcy Weisbach friction factor f for a full-flowing circular pipe. It is an approximation of the implicit Colebrook-White equation.

$$f = \frac{0.25}{[log_{10}(\frac{\epsilon}{3.7D} + \frac{5.74}{Re^{0.9}})]^2}$$

The equation was found to match the Colebrook-White equation within 1.0% for  $10^{-6} < \epsilon/D < 10^{-2}$  and 5000 < Re <  $10^{8}$ . However the Churchill method is applicable for all values of  $\epsilon/D$  and Re.

For an independent check of the friction factor the Moody diagram is used. Knowing the pipe flow Re and the pipe roughness coefficient  $\epsilon$  (units of m or ft), giving the relative roughness  $\epsilon/D$  (consistent units), the friction factor can be determined. The laminar flow line formula will allow verification of the diagram friction factor being used. Check friction factor at Re=1000; if Darcy f=0.064 and if Fanning f_F=0.016.

### Appendix I

### **General Equations for Fluid Flow**

A common form of the Darcy equation is the Darcy Weisbach equation which gives pressure drop in Ib/in².

$$\Delta P = 0.00000336 \frac{f L W^2}{\rho d^5}$$

- $\Delta \mathbf{P}$  Pressure drop ln/in²
- W Flow Rate lb/h
- **ρ** Fluid Density lb/ft³
- d Inside Diameter in

In a complex pipe system of pipes and fittings the total head loss is computed from each part using:

$$\mathbf{h}_{\mathrm{L}} = \sum \frac{\mathbf{f} \mathbf{L}}{\mathbf{D}} \frac{\mathbf{v}^2}{2\mathbf{g}} + \sum \mathbf{K} \frac{\mathbf{v}^2}{2\mathbf{g}}$$

It should be noted that f is the friction factor of the flowing fluid in the pipe section of diameter D whereas the equivalent lengths of valves and fittings are related to the fully turbulent friction factor  $f_t$  giving:

For the pipe 
$$\mathbf{K} = \mathbf{f} \cdot \frac{\mathbf{L}}{\mathbf{D}}$$
 For the fittings  $\mathbf{K} = \mathbf{f}_t \cdot \frac{\mathbf{L}_{eq}}{\mathbf{D}}$ 

An alternative approach is to determine the K values of the straight lengths of pipe, individual valves and fittings and substitute in the following:

$$\Delta \mathbf{P} = 0.00000028 \frac{\mathbf{K} \mathbf{W}^2}{\rho \mathbf{d}^4}$$

CHEMCAD calculates the equivalent length of fittings using the pipe friction factor and not the friction factor at fully turbulent conditions. This procedure is acceptable at fully turbulent conditions. However under laminar and transitional flow conditions the user should check, using the relationships presented here, to ensure acceptable design conditions.

If it is found that the pressure loss is significantly increased through the use of the prevailing friction factor the user can modify the equivalent length by adding an additional L/D correction in User Specified Fittings and Valve section on the Valve entry screen.

To overcome these problems CHEMCAD includes the facility to use the Darby 3K Method (Chemical Engineer July 1999, April 2001) which is valid over a wide range of Re and fitting size, can be used. Where we have:

$$\mathbf{K}_{\mathbf{f}} = \frac{\mathbf{K}_{\mathbf{m}}}{\mathbf{R}\mathbf{e}} + \mathbf{K}_{\mathbf{i}} \left( 1 + \frac{\mathbf{K}_{\mathbf{d}}}{\mathbf{D}_{\mathbf{in},\mathbf{nom}}^{0.3}} \right)$$

3K values for common fittings are presented later.

Losses due to Valves, Pipe Fittings and Special Components

#### CHEMCAD library resistance coefficients are derived from the Crane 410M reference.

In CHEMCAD, when handling enlargements and contractions the reducer fitting should be located in the smaller diameter Pipe UnitOp.

#### **Orifice Plates Crane (410M A-20)**

Orifice Plate Resistance Kr value is declared in CHEMCAD result report.

$$C = \frac{C_{d}}{\left(1 - \beta^{4}\right)^{0.5}} \qquad K_{r} \approx \frac{\left(1 - \beta^{2}\right)}{C^{2}\beta^{4}}$$

In CHEMCAD pressure loss due to orifice plates is entered as a User fitting on the valve screen.

## **Control Valves**

For a detailed review of valve sizing issues refer to Emerson Process Management, Fisher Control Valve Handbook, 4th Edition. However piping installation factors influencing the valve performance are reviewed here.

As a general "rule of thumb" control valves, fitted with full size trims, are usually sized to be less than the line size, typically ½D. This results in valves being fitted between pipe reducers. Line size valves, fitted with reduced trims, simplify installation but with a potential increase in cost.

The valve sizing is adjusted by the Piping Geometry Factor, F_p, which for a valve installed between identical reducers, is given by:

$$\mathbf{F}_{\mathrm{p}} = \left(1 + \frac{\Sigma \mathbf{K}}{\mathbf{N}_{2}} \left(\frac{\mathbf{C}_{\mathrm{v}}}{\mathrm{d}^{2}}\right)^{2}\right)^{-0.5}$$

$$\Sigma K = K_1 + K_2 = 1.5 (1 - \beta^2)^2$$

d = nominal valve size (in or mm)

#### β = d/D

 $N_2$  = 0.00214 (mm) and 890 (in) and  $C_v$  is valve sizing coefficient at 100% opening.

For liquid sizing we have a modified coefficient:

$$C_v = \frac{q}{N_1 F_p} \sqrt{\frac{G_f}{P_1 - P_2}}$$

 $N_1$  = 0.0865 (m³/h, kPa), 0.865 (m³/h, bar), 1.00 (gpm, psia) G_f = specific gravity referenced to water at 60°F

CHEMCAD allows for entry of F_p correction factor in the control valve sizing calculation procedure.

# Losses due to Valves, Pipe Fittings and Special Components

It should be noted that for ball valves Crane quotes a standard L/D of 3. Manufacturers' data should be checked to see if this is valid for size and type of valves being used.

The Resistance Coefficients and L/D can be determined from manufacturers'  $C_v$  data as follows:

Crane 410M, Equation 3-16, page 3-4 gives:

$$C_v = \frac{29.9 \text{ } \text{D}^2}{\text{K}^{0.5}} \quad \text{where} \qquad \qquad \text{K} = \frac{\text{h}_L}{\text{v}^2/2\text{g}}$$

D = Inside Pipe Diameter (in) Cv = Flow Coefficient (US gpm / psi) K = Resistance Coefficient (velocity head loss)

We also have the relationship:

$$\mathbf{K} = \mathbf{f} \frac{\mathbf{L}}{\mathbf{D}}$$
 for full turbulence  $\frac{\mathbf{L}}{\mathbf{D}} = \frac{\mathbf{K}}{\mathbf{f}_{\mathrm{T}}}$ 

f = Darcy (Moody) friction factor

f_T = Darcy (Moody) friction factor at full turbulence

Tables of equivalent lengths for reduced bore and full bore ball valves

Worcester Type 44/459 Reduced Bore Ball Valve									
Nominal Bore	C _v	L	L/D	K	Ft	D			
mm	US gpm/psi	ft				in			
15	8.3	1.9	36.7	1.942	0.053	0.622			
20	13.6	5.5	80.1	2.228	0.028	0.824			
25	37.5	3.0	34.3	0.770	0.022	1.049			
40	79.7	3.9	29.1	0.946	0.033	1.610			
50	106	7.5	43.5	1.452	0.033	2.067			
80	435	7.0	27.4	0.419	0.015	3.068			
100	638	27.0	80.5	0.577	0.007	4.026			
150	675	41.0	81.1	2.655	0.033	6.065			

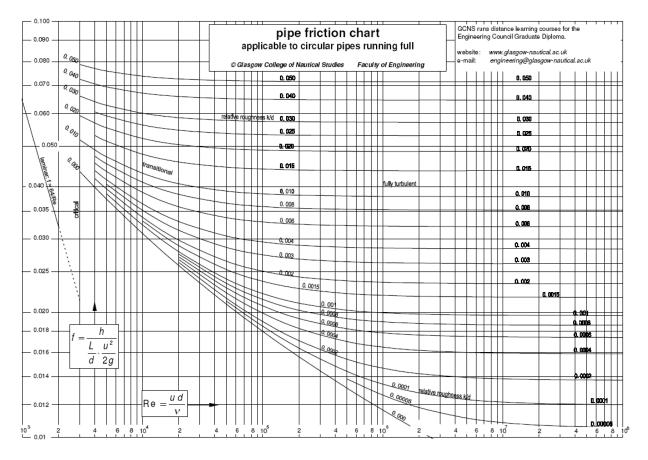
	Worcester Series 5 Flanged Ball Valve									
NB Sch 40	C _v	K	Ft 410M A23	L/D	L	D				
mm	US gpm/psi		ε 0.05 mm		ft	in				
15	32	0.131	0.0250	5.2	0.27	0.622				
20	54	0.141	0.0240	5.9	0.40	0.824				
25	94	0.123	0.0230	5.3	0.47	1.049				
40	254	0.093	0.0200	4.7	0.63	1.610				
50	130	0.966	0.0187	51.6	8.9	2.067				
80	350	0.647	0.0175	36.9	9.4	3.068				
100	720	0.453	0.0165	27.5	9.2	4.026				
150	1020	1.163	0.0145	80.2	40.5	6.065				
200	1800	1.120	0.0140	80.0	53.2	7.981				
250	2970	1.034	0.0135	76.6	64.1	10.05				

# Piping Design Considerations

Industry practice for initial design of piping systems is based on economic velocity or allowable pressure drop  $\Delta P/100$ ft. Once detailed isometrics are available the design will be adjusted to satisfy local site conditions.

Reasonable Velocities for Flow of Fluids through Pipes (Reference Crane 410M)									
Service Conditions	Fluid	Reasonat	ole Velocities	Pressure Drop					
Service Conditions	Fiulu	m/s	ft/s	kPa / m					
Boiler Feed	Water	2.4 to 4.6	8 to 15						
Pump Suction and Drain	Water	1.2 to 2.1	4 to 7						
General Service	Liquids pumped, non viscous	1.0 to 3.0	3.2 to 10	0.05					
Heating Short Lines	Saturated Steam 0 to 1.7 bar	20 to 30	65 to 100						
Process piping	Saturated Steam 1.7 and up	30 to 60	100 to 200						
Boiler and turbine leads	Superheated Steam 14 and up	30 to 100	100 to 325						
Process piping	Gases and Vapours	15 to 30	50 to 100	0.02% line pressure					
Process piping	Liquids gravity flow			0.05					

Reasonable velocities based on pipe diameter (Process Plant Design, Backhurst Harker p235)


Pump suction line for	d in	(d/6 + 1.3) ft/s	and d mm	(d/500 + 0.4) m/s
Pump discharge line for	d in	(d/3 + 5) ft/s	and d mm	(d/250 + 1.5) m/s
Steam or gas	d in	20d ft/s	and d mm	0.24d m/s

Heuristics for process design (Reference W.D.Seader, J.D.Seider and D.R.Lewin, "Process Design Principles") are also given:

Liquid Pump suction	(1.3 + d/6	) ft/s	0.4 psi /100 ft
Liquid Pump discharge	(5.0 + d/3	) ft/s	2.0 psi / 100 ft
Steam or gas	(20d)	ft/s	0.5 psi / 100 ft

Control valve pressure drop needs to be at a reasonable % of total system pressure drop to provide good control. If too low, ie valve oversized, the control valve opening will be small leading to unstable control; if too high flow could be limited leading to throughput concerns. A general "Rule of Thumb" is for a full sized trim control valve to be half the line size.

# Moody Diagram – Darcy Friction Factor



Example Friction factor for cast iron pipe D = 500mm,  $\varepsilon$  = 0.5 mm ( $\varepsilon$ /D = 0.001) with Re of 300000 is 0.026

The diagram below shows Colebrook, Churchill, Darcy-Churchill and Blasius friction factors for smooth pipes. The Blasius Equation being the most accurate for smooth pipes. estimating turbulent pressure drops. Smooth pipe conditions are very well defined.

0.01 0.009 0.008 0.007 0.006 Friction Factor Colebrook Churchill 0.005 ----- Darcy-Ch Blasius 0.004 0.003 0.002 0.001 0 0 20000 40000 60000 80000 100000 120000 **Reynolds Number** 

Comparison of Smooth-pipe Friction Factor Correlations.

MNL 063B Issued 29 August 2008, Prepared by J.E.Edwards of P & I Design Ltd, Teesside, UK

# **Flow Meter Considerations**

To model piping systems, involving special items such as flow meters, CHEMCAD provides a facility under the Valve Data entry Window in the Pipe UnitOp for resistance parameters to be entered in various formats. The following guidelines should be considered when selecting flow meter sizes.

# Magnetic Flow Meter

Velocity Limits for Flow of Fluids through Magnetic Flow Meters (Foxboro Bulletin)								
Service Conditions	Fluid	Reasonab	le Velocities	Pressure Drop				
Service Conditions	T luiu	m/s	ft/s	kPa / m				
General Service	Liquids pumped, non viscous	0.9 to 4.6	3.0 to 15	Line size meter				
and Process Piping	Erosive Slurries	0.9 to 4.6	3 to 6	Same $\Delta P$ as pipe				
and i locess i iping	Coating forming liquids	1.8 to 4.6	6 to 16					

## Mass Flow Meter

Because of the wide turndown capability of Coriolis flowmeters (30:1 to as high as 200:1), the same flow can be measured by two or three different sized flow tubes subject to accuracy requirements. Using the smallest possible meter lowers the initial cost and reduces coating build-up, but increases erosion/corrosion rates and head loss.

Using a meter that is smaller than line size is acceptable if the process fluid is clean with a low viscosity. However on corrosive, viscous, or abrasive slurry services, this practice may cause reduced operational life. Flow tube sizes and corresponding pressure drops, inaccuracies, and flow velocities can be obtained from software provided by the manufacturer.

Different Coriolis meter principles incur different pressure drops, but in general they require more than traditional volumetric meters, which usually operate at less than 10 psi. This higher head loss is due to the reduced tubing diameter and the circuitous path of flow. Head loss can be of concern if the meter is installed in a low-pressure system, or if there is a potential for cavitation or flashing, or if the fluid viscosity is very high.

# **Vortex Shedding Meter**

Measurable flow velocities on liquids are in the general range of 0.5 to 9.0 m/s (1.5 to 32 ft/s).

On gas or steam the flow velocities are in the range 
$$\sqrt{\frac{74}{\rho}}$$
 to 79 m/s ( $\sqrt{\frac{50}{\rho}}$  to 260 ft/s)

Where  $\rho$  fluid density (kg/m³ or lb/ft³)

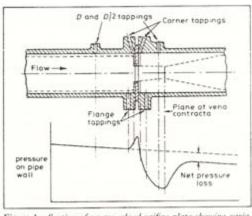
Process fluid viscosity requires the Reynolds Number to be greater than 20000

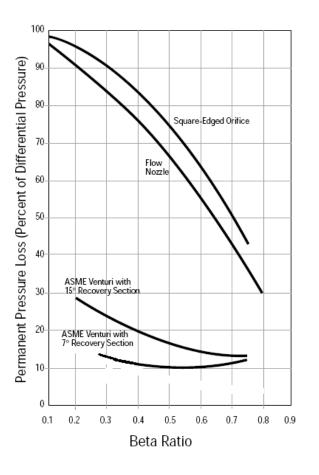
Linear performance is achieved for Reynolds Number in the range 20000 to 7.0 E06

#### **Flow Meter Considerations**

#### **Differential Head Flowmeters**

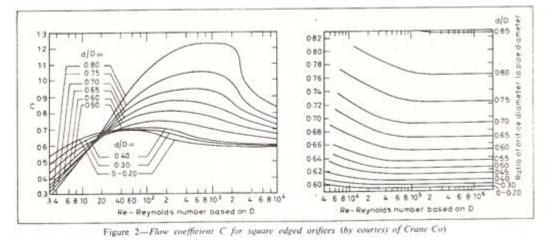
The differential pressure measured and unrecovered pressure loss across a square edge concentric orifice plate is dependent on the pressure tap location; as shown in the diagrams below. It can be seen that full flow taps (2½D and 8D) measures the permanent pressure loss and should be used for restriction orifice calculations.





Figure 1—Section of square-edged orifice plate showing variation of pressure along the pipe wall (by courtesy of BSI)

For liquids

$$Q = K d^{2}C \sqrt{\frac{h}{\rho_{f}}}$$
$$W = K d^{2}C \sqrt{h \rho}$$


For gases

$$W = K d^2 C \sqrt{\frac{h p_f M}{T_f}}$$



The diagram below shows the dependency of flow coefficient C on Re and d/D ( $\beta$ ).

d/D ( $\beta$ ) ratios  $\leq$  0.6 are preferred. For  $\beta$ > 0.6 viscosity effects are magnified combined with increased sensitivity to upstream piping configurations.



# **Control Valve Logic in CHEMCAD**

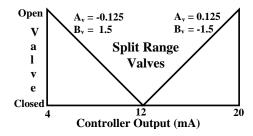
The controller output is used by the control valve to determine the valve position. The control valve algorithm is as follows:

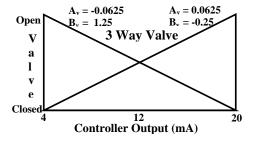
$$T_v \left( \frac{du}{dt} \right) + u = A_v * P + B_v$$

Where: Tv = valve time constant

Ρ

u = valve position logic 0(closed) or 1(open)


= input signal mA for logic 0 or 1


In the default condition, the time dependent term is equal zero. Time valve constant Tv must be either 0 or positive. The larger this value is the slower is the valve response to the signal change.

SINGLE CONTROL VALVE OPERATIONS									
ACTION	CONTROL OUTPUT		POSITION	STATE	LOGIC	COEFFIC	IENTS		
ACTION	mA	%	FUSITION	POSITION STATE		Av	Bv		
FAIL CLOSED	4	0	Closed	0	$0 = 4A_v + B_v$	0.0625	-0.25		
FAIL GLUSED	20	100	Open	1	$1 = 20A_v + B_v$	0.0025	-0.25		
FAIL OPEN	4	0	Open	1	$1 = 4A_v + B_v$	-0.0625	1.25		
	20	100	Closed	0	$0 = 20A_v + B_v$	-0.0025	1.25		



DUAL CONTROL VALVE OPERATIONS IN SPLIT RANGE									
ACTION	CONTROL OUTPUT		POSITION	STATE	LOGIC	COEFFIC	IENTS		
ACTION	mA	%	POSITION STATE		EQUATION	Av	Bv		
FAIL CLOSED	12	50	Closed	0	$0 = 12A_v + B_v$	0.125	-15		
FAIL CLOSED	20	100	Open	1	$1 = 20A_v + B_v$	0.125	-1.5		
FAIL OPEN	4	0	Open	1	$1 = 4A_v + B_v$	-0.125	1.5		
FAIL OPEN	12	50	Closed	0	$0 = 12A_v + B_v$	-0.125	1.0		





# Pipe dimensions to ASME B36.1 /API 5L Plastic Lined Pipe Dimensions

Imperial													
							Wall Th	ickness	s (inche	s)			
NB	DN	OD (inches)	SCH 5	SCH 10	SCH 20	SCH 30	SCН 40	SCH 60	SCH 80	SCH 100	SCH 120	SCH 140	SCH 160
3/4"	20	1.05	0.065	0.083	х	0.095	0.113	х	0.154	х	0.17	х	0.219
1	25	1.315	0.065	0.109	x	0.114	0.133	х	0.179	х	0.2	х	0.25
1.1/2	40	1.9	0.065	0.109	х	0.125	0.145	х	0.2	х	0.225	х	0.281
2	50	2.375	0.065	0.109	х	х	0.154	х	0.218	х	0.25	х	0.344
2.1/2	65	2.875	0.083	0.12	х	х	0.203	х	0.276	х	0.3	х	0.375
3	80	3.5	0.083	0.12	х	х	0.216	х	0.3	х	0.35	х	0.438
4	100	4.5	0.083	0.12	х	х	0.237	х	0.337	х	0.437	х	0.531
5	125	5.563	0.109	0.134	х	х	0.258	х	0.375	х	0.5	х	0.625
6	150	6.625	0.109	0.134	х	х	0.28	х	0.432	х	0.562	х	0.719
8	200	8.625	0.109	0.148	0.25	0.277	0.322	0.406	0.5	0.593	0.718	0.812	0.906
10	250	10.75	0.134	0.165	0.25	0.307	0.365	0.5	0.593	0.718	0.843	1	1.125
12	300	12.75	0.165	0.18	0.25	0.33	0.406	0.5	0.687	0.843	1	1.125	1.312

Metric													
					-		Wall 1	hickne	ss (mm)	)			
NB	DN	OD (mm)	SCH 5	SCH 10	SCH 20	SCH 30	SCH 40	SCH 60	SCH 80	SCH 100	SCH 120	SCH 140	SCH 160
3/4"	20	26.67	1.65	2.11	x	2.41	2.87	х	3.91	х	4.32	х	5.56
1	25	33.401	1.65	2.77	х	2.90	3.38	х	4.55	х	5.08	х	6.35
1.1/2	40	48.26	1.65	2.77	х	3.18	3.68	х	5.08	х	5.72	х	7.14
2	50	60.325	1.65	2.77	х	х	3.91	х	5.54	х	6.35	х	8.74
2.1/2	65	73.025	2.11	3.05	х	х	5.16	х	7.01	х	7.62	х	9.53
3	80	88.9	2.11	3.05	x	х	5.49	х	7.62	х	8.89	х	11.13
4	100	114.3	2.11	3.05	х	х	6.02	х	8.56	х	11.10	х	13.49
5	125	141.3002	2.77	3.40	х	х	6.55	х	9.53	х	12.70	х	15.88
6	150	168.275	2.77	3.40	х	х	7.11	х	10.97	х	14.27	х	18.26
8	200	219.075	2.77	3.76	6.35	7.04	8.18	10.31	12.70	15.06	18.24	20.62	23.01
10	250	273.05	3.40	4.19	6.35	7.80	9.27	12.70	15.06	18.24	21.41	25.40	28.58
12	300	323.85	4.19	4.57	6.35	8.38	10.31	12.70	17.45	21.41	25.40	28.58	33.32

CRPI	CRP Flex-Rite Ltd Lined Pipe Dimensions <u>www.crp.co.uk</u>								
Spool NB in	PTFE Thickness mm	Pipe Wall Thickness mm							
1/2	2.0	2.9							
3/4	2.0	2.9							
1	3.2	3.4							
11/2	3.2	3.7							
2	3.3	3.9							
3	3.3	5.5							
4	4.5	6.0							
6	5.5	7.1							
8 Standard	5.0	7.0							
8 Heavy	8.0	7.0							
10 Standard	5.0	7.8							
10 Heavy	9.0	7.8							
12 Standard	6.0	8.4							
12 Heavy	9.5	8.4							

# Table of Roughness Coefficients

For turbulent flow the friction coefficient depends on the Reynolds Number and the roughness of the duct or pipe wall. Relative roughness for materials are determined by experiments.

Roughness Coefficients ε								
Surface	Roughness Coefficient ε							
Surface	0.001 m	ft						
Copper, Lead, Brass, Aluminium	0.001 - 0.002	$3.33 - 6.7 \ 10^{-6}$						
PVC and Plastic Pipes	0.0015 - 0.007	$0.5 - 2.33 \ 10^{-5}$						
Stainless Steel	0.015	5 10 ⁻⁵						
Commercial Steel Pipe	0.045 - 0.09	1.5 - 3 10 ⁻⁴						
Drawn Steel	0.015	5 10 ⁻⁵						
Weld Steel	0.045	1.5 10 ⁻⁴						
Galvanized Steel	0.15	5 10 ⁻⁴						
Rusted Steel(corrosion)	0.15 - 4	5 - 133 10 ⁻⁴						
New Cast Iron	0.25 - 0.8	8 - 27 10 ⁻⁴						
Worn Cast Iron	0.8 - 1.5	2.7 - 5 10 ⁻³						
Rusty Cast Iron	1.5 - 2.5	$5 - 8.3 \ 10^{-3}$						
Asphalted Cast Iron	0.01 - 0.015	3.33 - 5 10 ⁻⁵						
Smoothed Cement	0.3	1 10 ⁻³						
Ordinary Concrete	0.3 - 1	$1 - 3.33 \ 10^{-3}$						
Coarse Concrete	0.3 - 5	$1 - 16.7 \ 10^{-3}$						
Well Planed Wood	0.18 - 0.9	6 - 30 10 ⁻⁴						
Ordinary Wood	5	16.7 10 ⁻³						

## Darby 3K Coefficient Values (Reference Darby Chemical Engineering April 2001)

Fi	itting	r/D	(L/D) _{eq}	K _m	K _i	K _d
Tees, Flow	Threaded	1.0	60	500	0.274	4.0
Through	Threaded	1.5	None	800	0.14	4.0
Branch	Flanged	1.0	20	800	0.28	4.0
(as elbow)	Stub-in branch		None	1000	0.34	4.0
Tees, Flow	Threaded	1.0	20	200	0.091	4.0
Through	Flanged	1.0	None	150	0.017	4.0
Run	Stub-in branch		None	100	0	0
	Diaphragm	Dam Type	None	1000	0.69	4.9
	Plug 3 way	Branch	90	500	0.41	4.0
	Plug 3 way	Through	30	300	0.14	4.0
	Plug	Straight	18	300	0.084	3.9
Valves	Gate	β = 1	8	300	0.037	3.9
(ρ in lb/ft ³ )	Globe	β = 1	340	1500	1.70	3.6
	Swing Check	$v_{min} = 35 \rho^{-0.5}$	100	1500	0.46	4.0
	Lift Check	$v_{min} = 40 \rho^{-0.5}$	600	2000	2.85	3.8

# Control Valve Sizing Coefficients (Reference Fisher Handbook 4thEdition)

	S	ingle Ported Globe Styl	e Valve Bodies		
Size (in)	Plug Type	Characteristic	Port φ (in)	Travel (in)	Cv
1/2	Stem Guided	Equal %	0.38	0.5	2.41
3⁄4	Stem Guided	Equal %	0.56	0.5	5.92
1	Microform	Equal %	³ / ₈ - ³ / ₄	3⁄4	3.07-8.84
1	Cage Guided	Linear / Equal %	15/16	3/4	20.6/17.2
11⁄2	Microform	Equal %	³ / ₈ - ³ / ₄	3⁄4	3.2- 10.2
1½	Cage Guided	Linear / Equal %	11 %	3⁄4	39.2/35.8
2	Cage Guided	Linear / Equal %	25/16	11⁄8	72.9/59.7
3	Cage Guided	Linear / Equal %	37/16	1½	148/136
4	Cage Guided	Linear / Equal %	43/8	2	236/224
6	Cage Guided	Linear / Equal %	7	2	433/394
8	Cage Guided	Linear / Equal %	8	3	846/818

Size (in)	Valve Style	Degrees Opening	Cv
1	V-Notch Ball Valve	60 / 90	15.6 /34.0
11/2	V-Notch Ball Valve	60 / 90	28.5 / 77.3
2	V-Notch Ball Valve	60 / 90	59.2 / 132
2	Butterfly Valve	60 / 90	58.9 / 80.2
3	V-Notch Ball Valve	60 / 90	120 / 321
3	Butterfly Valve	60 / 90	115 / 237
4	V-Notch Ball Valve	60 / 90	195 / 596
4	Butterfly Valve	60 / 90	270 / 499
6	V-Notch Ball Valve	60 / 90	340 / 1100
6	Butterfly Valve	60 / 90	664 / 1260
8	V-Notch Ball Valve	60 / 90	518 / 1820
8	Butterfly Valve	60 / 90	1160 / 2180
10	V-Notch Ball Valve	60 / 90	1000 / 3000
10	Butterfly Valve	60 / 90	1670 / 3600

# Worcester Series 5 Flanged Ball Valve

# Flow Coefficients

Valve Size			Flow Coefficients		
mm	in	Model	Cv	Kv	
15	1/2	519/529	32	27	
20	3⁄4	519/529	54	46	
25	1	519/529	94	80	
40	1½	519/529	254	219	
50	2	51/52	130	112.5	
80	3	51/52	350	303	
100	4	51/52	720	623	
150	6	51/52	1020	882	
200	8	51/52	1800	1557	
250	10	51/52	2970	2560	
	See Note 3	Cv – Flow in US GPM Pressure – psi Kv – Flow in M³/hr Pressure – bar			

# Worcester Series 44/459 Reduced Bore Ball Valves

Valve Size		Flow Coefficients		Equivalent Length of Pipe	
mm	in	Cv	Kv	Feet	Metres
15	1/2	8.3	7.2	1.9	0.58
20	3⁄4	13.6	11.8	5.5	1.67
25	1	37.5	32.6	3	0.91
32	1¼	57	49.3	3.1	0.94
40	1½	79.7	69.1	3.9	1.19
50	2	106	91.8	7.5	2.28
65	21⁄2	188	163	150	1.52
80	3	435	377	7	2.13
100	4	638	553	27	8.21
150	6	675	585	41	12.47
Cv – Flow in US GPM Pressure – psi Kv – Flow in M³/hr Pressure – bar					

# Flow Coefficients

Note that the equivalent length of pipe has been declared which requires a friction coefficient at turbulence to be determined to allow a K value to be calculated; see later.

# Atomac AKH3 Lined Ball Valves

#### Maximum $C_v$ ( $K_v$ ) Values A Typical Characteristic Curve for V-Port AKH3 Valves for V-Port AKH3 Valves 100 in (mm) C, K, 1 (25) 6/14 5/12 90 15 13 1½ (40) 80 2 (50) 40 36 70 3 (80) 65 56 % of Maximum $C_v$ 141 122 4 (100) 60 189 6 (150) 163 50 $C_v = US \text{ gal/min at 1 psi } \Delta p (K_v = m^3/\text{hr at 1 bar } \Delta p)$ 40 Refer to Sections II and IV of the Durco Technical Manual for valve and actuator sizing. 30 Consult factory for AKH2A data. 20 ISO 5211 mounting pad facilitates actuation. 10 0 10 20 100 0 30 40 50 60 70 80 90 % of Opening – Live Zero

# **Flowserve Corporation ASF Inline Strainers**

Size in (mm)	Filter in µm C, (K,) 100	Filter in µm C _v (K _v ) 300	Filter in µm C, (K,) 500	Filter in µm C _v (K _v ) 1000
1 (25)	8.1 (7.0)	8.3 (7.1)	8.4 (7.2)	9.2 (7.9)
1½ (40)	21.9 (18.8)	24.8 (21.3)	27.4 (23.6)	28.0 (24.1)
2 (50)	34.4 (29.6)	36.1 (31.1)	37.5 (32.3)	41.4 (35.4)
3 (80)	91.1 (78.4)	97.4 (83.8)	105.1 (90.4)	109.4 (94.1)
4 (100)	152.7 (131.4)	163.0 (140.2)	172.8 (148.7)	178.2 (153.3)
6 (150)	333.7 (287.1)	356.0 (306.3)	389.6 (335.2)	405.5 (348.9)
8 (200)	544.0 (468.0)	556.7 (479.0)	576* (495*)	596.3 (513.0)

 $C_v = US \text{ gal/min at 1 psi } \Delta p (K_v = m^3/hr \text{ at 1 bar } \Delta p)$ . Flow rates for other mesh sizes available upon request.