Incorporating Reality Into Process Simulation

Nathan Massey Chemstations, Inc. January 10, 2002

Levels of Reality in Process Simulation

- 1. Data Accuracy and Comprehensiveness
 - Physical Properties
 - Phase Properties (BIP's)
 - Chemical Properties
- 2. Equilibrium Models
 - Phase (VLE, LLE, SLE)
 - Chemical Reaction (Gibbs or Emperical)
- 3. Rate Models
 - Reaction
 - Mass Transfer
 - Heat Transfer
 - Momentum Transfer (pressure drops)

Levels of Reality in Process Simulation

- 4. Mechanical Considerations
 - Pump and Compressor performance curves
 - Valve Geometry
 - Solids UnitOps
- 5. Time Dependence
 - Holdups
 - Transients inputs and fluctuations
 - Signal delays
 - Control response

Historically,

Steady State
Process
Simulation

Equipment
Sizing
& Rating

Reactor Design

Training Simulators

Dynamic Process Simulation

Plant Optimization

Historically,

Over time these gaps began to close:

- i. Faster computers
- ii. Better software technology
- iii. Improved numerical techniques
- iv. Better engineering models
- v. Cumulative effort

Historically,

These things resulted in the following developments:

- Dynamic Simulation
 - required equipment parameters such as geometry, Cv, PIDC, etc.
- Mass transfer
 - required column geometries
- Numerical techniques
 - full or quasi equation solving permitted integration of piping, valves, etc.
- Better software and faster computers
 - integration of many components or models
 - customization
 - communications

Now simulations can be more realistic:

Now simulations can be more realistic:

Dynamic considerations

Azeotropic Distillation Example:

Residue Curve Map for Azeotropic System

Residue Map for EtOH-H2O-nC5 System

	Miscible/immiscible	Azeotrope	Azeotrope	
		composition, mole%	temperature, F	
Ethanol-water	Miscible	90.4 .v. 90.8 EtOH	172.8 .v. 173.1	
Ethanol-npentane	Miscible	92.4 .v. 92.2 nC ₅	93.7 .v. 95.5	
npentane-water	Immiscible	94.6 .v. 94.6 nC ₅	94.3 .v. 93.8	
Ethanol-water-npentane	immiscible	4.4,6.1,89.5 .v. 4.9,5.4,89.7	92.1 .v. 93.2	

Preliminary Material Balance prepared from Residue Map

Sensitivity analysis using equilibrium stages:

Mass Transfer in Distillation Calculations

The Early History of Distillation Calculations

- 1. Concept of equilibrium stage introduced by Sorel in 1893.
- 2. McCabe-Thiele diagrams for number of theoretical stages in 1925
- 3. Lewis-Matheson and Thiele-Geddes methods for rigorous (tray-by-tray) multicomponent distillation in 1930's. Not generally used until the appearance of computers in the 1950's.

Mass Transfer in Distillation Calculations (cont.)

In all of these methods the departure from thermodynamic equilibrium is accounted for by using empirical factors:

- (i) stages efficiencies for trays
- (ii) HETP for packing

Trays: Stage efficiencies can vary -∞ to +∞. Vary with component, stage, conditions, etc.

Packing: HETP varies not only with size and type of packing, but also from one component to another and strongly from point to point in a column to another.

These phenomena are especially true for non-ideal mixtures, operating at extreme conditions.

Mass Transfer in Distillation Calculations (cont.)

The rate based approach:

- 1. Is more complex.
- 2. Has shorter application history.
- 3. Is completely predictive (based on component physical properties and BIPs), so avoids stage efficiencies and HETP.
- 4. Is at least as accurate as the equilibrium method.
- 5. Is the only method which can guarantee the accuracy of simulations involving simultaneous mass transfer and chemical reactions.

With tray layout and mass transfer calculations included:

Equip. 1	Tray No. 1	
Tray Loadings	Vapor	Liquid
	64176.582 lb/h	62944.359 lb/h
	124535.495 ft3/hr	1723.614 ft3/hr
Density	0.515 lb/ft3	36.519 lb/ft3
System factor		1.000
Valve type : V-1		
Valve material : S.S.		
Valve thickness, gage		12.000
Deck thickness, gage		14.000
Tower internal diameter,	ft	6.000
Tray spacing, in		24.000
No. of tray liquid passes		1
Downcomer dimension,	Width in Length in	
Side	10.750 51.320	2.642
Avg. weir length in		51.320
Weir height, in		2.000
Flow path length in		50.500
Flow path width in		65.559
Tray area, ft2		28.274
Tray active area ft2		22.991
% flood		47.900
Mole area ft2		4.368
Approx # of valves		342
Tray press loss, in		3.977
Tray press loss, psi		0.084
Dry press drop, in		2.138
Downcomer clearance in		3.000
Downcomer head loss in		0.130
Downcomer backup in		7.205
Downcomer residence time,		3.313
Liquid holdup ft3		5.110
Liquid holdup 1b		186.605
Design pressure, psia		47.558
Joint efficiency		0.850
Allowable stress usia		13700.000

Sensitivity analysis using mass transfer (rate based) method:

Temperature profiles under "ideal" and "real" conditions:

In conventional simulations, heat exchangers are simulated by making two types of specifications:

- Thermodynamic specs T,Q,VF,...
- "Rating" specs U*A (used frequently in dynamics)

This approach will not account for changing conditions which affect:

- film coefficients
- pressure drops
- varying outlet temperatures
- possible unexpected phase changes

Rigorous rating is done after the simulation.

TEMA SHEET								
1								
2 Customer		Ref No.						
3 Address	Prop No.							
4 Plant Loc.	Date Rev							
5 Service of Unit		Item						
6 Size 27.0in x 20.0ft Typ	6 Size 27.0in x 20.0ft Type AEL (Hor/Vert) H Connected in 1 Para 1 Seri							
7 Surf/Unit 2572.2/2536.0 ft2; Shell/Unit 1.000000 Surf/Shell 2572.2/2536.0 ft2								
8 P	ERFORMANCE OF ONE	UNIT						
9 Type of Process	Horiz Cond	Sensible						
10 Fluid Allocation	Shell Side	Tube Side						
11 Fluid Name								
12 Flow	64329.0	229691.2	1b/h					
13 Liquid	0.0	229691.2	1b/h					
14 Vapor	64329.0	0.0	lb/h					
15 NonCondensable	0.00000	0.00000	lb/h					
16 Steam	0.0	0.0	1b/h					
17 Evap/Cond	64329.0	0.0	1b/h					
18 Density	0.507/36.923	0.000/60.874	lb/ft3					
19 Conductivity	0.011/0.059	0.000/0.361	Btu/hr-ft-F					
20 Specific Heat	0.443/0.625	0.000/0.999	Btu/lb-F					
21 Viscosity at Avg.	0.009/0.207	0.000/0.705	cP					
22 Latent Heat	169.45	0.00	Btu/1b					
23 Temperature(In/Out)	160.217/146.432	80.000/130.883	F					
24 Operating Pressure	47.56	50.00	psia					
25 Fouling Factor	0.001000	0.001000	hr-ft2-F/Btu					
26 Velocity	6.18	0.76	ft/sec					
27 Press Drop Allow/Calc	3.500/1.046	5.000/0.066 psi						
28 Heat Exchanged 1.166e+0	01 MMBtu; MTD(Co	rrected): 48.91 F						
29 Transfer Rate, Service:	94.0 Clean:	115.8 Btu/hr-ft2-	F					
30	CONSTRUCTION DA	TA/SHELL	Sketch					
31	Shell Side	Tube Side						
32 Design/Test Press psia	0.000000/Code	0.000000/Code						
33 Design Temperature F	0.000	0.000						
34 No. Passes per Shell	1	1						
35 Corrosion Allowance in	0.000	0.000						
26 Compositions TW Th 4	. 12 000	12 000						

Effect of feed change on column pressure control:

Response to feed impurities:

Equipment Which Can Be Included:

- Distillation
- Reactors (CSTR's, PFR's special models)
- Heat Exchangers
- Prime movers = pumps, compressors, etc.
- Pipes
- Valves
- Vessels and Tanks
- PID Controllers

50 Mat 2

Benefits of "reality" simulations:

Some final notes

Mass Transfer in Distillation Calculations (cont.)

TWO TYPES OF METHODS:

- 1) Methods of the first type begin with the mass and heat balances of an differential element of the packing or of the two-phase layer on the plate.
- 2) The other group of methods of simulation for multicomponent separation is the non-equilibrium stage model pioneered by Krishnamurty and Taylor.

Both types of methods give basically the same results. At present, the latter model is the more accepted approach.

Mass Transfer in Distillation Calculations (cont.)

In this presentation some examples of experimentally verified rated based distillations are presented. The chosen test systems cover a range of components which exhibiting various degrees of differences in chemical structure and in the binary diffusivities and/or enthalpies of vaporization.

- Ethanol/water/n-pentane
- Ethane/Ethylene
- Formaldehyde/water/methanol
- HCI/water/air

Temperature profiles

Formaldehyde/Water/Methanol:

Formaldehyde/Water/Methanol:

HCI Scrubbing:

Packed column mass transfer

Ottorio No	٦		~		
Stream No.	⊥	2	3	4_	
Name					
Overall					
Molar flow lbmol/hr	251.0000	130.0000	116.6215	264.3785	
Mass flow lb/hr	4540.2109	3974.9302	3180.4668	5334.6743	
Temp F	100.0000	100.0000	179.0061	223.1575	
Pres psia	50.0000	50.0000	50.0000	50.0000	
Vapor mole fraction	0.0000	1.000	1.000	0.0000	
Enth MMBtu/hr	-30.710	-1.1717	-1.6467	-30.235	
Actual vol ft3/hr	73.4892	15572.6572	15957.3486	111.7490	
Std lia ft3/hr	72.8439	74.1990	58.3214	88.7215	
Std vap 6NF scfh	95249.1328	49332.2227	44255.3789	100325.9922	

HCI Scrubbing:

Mass Transfer in Distillation Calculations (cont.)

The rate-based approach is recommended for modeling of the following operations:

- Packed columns
- Mixtures which exhibit strongly non-ideal behavior
- Reactive distillation
- Any column with profiles of rapidly changing slope

Thank You End

End

